Predictable Execution:
Operating Systems Issues

Michael B. Jones — Microsoft Research

Joint work with
John Regehr — University of Virginia

Goal: Coexisting Independent
Real-Time Applications

¢ Independently developed
¢ Predictable concurrent execution of

> real-time and non-real-time apps
¢ Meeting all apps’ timing needs
> Informing apps when not possible

Overview

¢ Developing soft real-time scheduler
for Windows NT

> Described in second half of talk

¢ Predictability issues

> How large are observed worst-case
thread scheduling latencies?

> What causes them?
> What has been done about them?
> Described in first half of talk

Part 1:

The Problems You’re Having
May Not Be the Problems You
Think You’re Having:

Results from a Latency Study
of Windows NT

Research Context

¢ Developing soft real-time scheduler
for Windows NT

¢ Predictability issues:

> How large are observed worst-case
thread scheduling latencies?

> Can they be improved?
® Measured actual latencies

NT Latency Results

¢ Typically can schedule tasks every
small number of milliseconds

¢ Butill-behaved drivers, hardware can
take many milliseconds

> Software delays of up to 16ms observed
> Hardware delays of up to 30ms observed

Results from NT 5, Pentium 11-333

Deferred Procedure Calls

® ¢ 6 6 0 o

Analogous to Unix bottom halves
Are preempted by interrupts
Preempt normal threads

May not block

Are run in FIFO order

Typical Uses:
> 1/0 Completion Processing
> Background Driver Housekeeping

Non-Problems

¢ Interrupts

> Interrupt handlers needing substantial
work queue DPCs

> Never observed interrupt handler
taking substantial fraction of ms

¢ Ethernet Packet Processing

> With back-to-back 100Mbit incoming
packets of UDP or TCP data:

> Longest observed DPC 600us
> Longest delay of user code ~2ms

¢ Tested four common Ethernet cards

Problem: “Unimportant”
Background Work

DEC dc21x4 PCI Fast 10/100 Ethernet
6ms periodic DPC every Ss

> Autosense processing

Most of 6ms in five 0.88ms calls to
routine that reads device register that:

> Writes a HW register — 1.5us

> Stalls for Sus

> Writes HW register again — 1.5us

> Stalls for Sus

> Reads a HW register — 1.5us

> Stalls for Sus

And does this 16 times! (once per bit)

Another Long DPC: Intel EE 16

¢ Intel EtherExpress 16 ISA Ethernet
¢ 17ms DPC every 10s
¢ Card reset for no received packets

Amusing Observation
¢ Unplugging Ethernet makes latency
worse!

> Despite conventional wisdom to the
contrary

Even Worse: Video Cards

4

¢ o

Video cards and drivers conspire to
hog the PCI bus

Dragging large window locks out
interrupts for up to 30ms

Obliterates sound I/0, for instance

Can set registry key to ask drivers to
behave, but not default

> No problem when set correctly

Manufacturers’ motivation:
WinBench ~ 5% improvement

Video Card
Misbehavior Details

¢ Don’t check if card FIFO full before write
> Eliminate a PCI read

¢ Stalls PCI bus if full to prevent overflow
> Even with AGP, big blits are slow

¢ Problem observed on:
> AccelStar II AGP
> Matrox Millenium 11

¢ Several other major cards also do this

¢ o

Example Bug:
Multimedia Timers

MP HAL uses 976us interrupt period

Multimedia timers compute absolute
time for next wakeup in whole ms

> Converted to relative wakeup time and
passed to kernel

Interrupt occurs just before wakeup
> Timer doesn’t fire
> Next time, fires twice to catch up

Fix: compute wakeup in 100ns units

Windows Media Player
Audio Dropouts

¢ Playback glitches when in contention
with other apps

¢ Concerted effort to find, fix causes
betore Windows 2000 ship

Media Player Thread
Structure (Simplified)

Thread Period (ms) Priority
Kernel Mixer |10 24

MP3 Decoder |100 9

Disk Reader {2000 8

User Interface |45 3

MP3 Playback w/o Contention

cstss.exe(156) tid 180 | | IIIF W ||I|‘ RN R IIFII R LLEN R III‘IIII NI

csrss.exne(156) tid 728

explorer.ene(708) tid 736
ke)it 0 AP P01 0000000 A
mplayer2.exe(772) tid 280

mplayer2.exe(772) tid 308 | | | \ |
mplayer2.exe(772) tid 732 |||’|)l|||||||l|| ENRRENE NN RN AN
mplayer2.exe(772) tid 828
mplayer2.exs(772) tid B8 ‘ ‘ ’ ’ ‘ | ’ ’ ‘ ’ ’ ‘ }
System(8) tid 28 | |
System(8) tid 40 | | | |
System(8) tid 48 | |
System(8) tid 60 | |
System(8) tid 64 |
System(8) tid 824
System(8) tid 832
Thread 25000 25500 26000 26500 27000
Time { ms)

¢ Working fine
¢ Kmixer thread (bottom) runs every 10ms
¢ MP3 decoder (middle) runs every 100ms

Priority Inversion Caused By

¢ o

Competlng Thread

busy.exe(664) tid 700 | | || | | |
csrss.cnc(13 l.‘:n]l tid 180
kmixer starve
mplayer2.cxe [Enm tid 708] Il
mplayerZ.exe(800) tid 768 |
System(8) tid 32 |
System(8) tid 772 | | 1 1 |
Thread 14:13:: 14:14& 14;&1
Time (ms)

Priority inversion at time 14324ms

Busy thread (7op) preempts decoder thread
while holding kmixer buffer lock

Kmixer (bottom) starves causing audio dropout

Fix: Raise priority in decoder to that of kmixer
before acquiring lock

> Manual application of Priority Ceiling Protocol

L.esson

Your Intuition About
Performance is Wrong

Only Measurement
Reveals the Truth!

Bottom Line

¢ Yes, NT can do RT scheduling

¢ Have done a prototype

> But will be of limited value if
unscheduled activities continue taking
tens of milliseconds

¢ NT developed, tested for throughput
> Not small numbers of ms of latency
> Improvement will require
> Systematic latency testing
> Latency requirements specifications

Progress Since Initial Work

¢ WHQL tests for video drivers
> Verity PCI timing with hardware

¢ Many timing bugs found, fixed
> E.g., media player priority inversion

¢ Attempting to institute systematic
latency specifications and testing

> Interrupt hold times & counts
> DPC hold times & counts
> Standards for use of priority values

Part 11;

CPU Reservations and Time
Constraints: Implementation
Experience on Windows NT

Part 11 Outline
Introduction
Rialto Background
Windows NT Implementation
Performance and Traces

Related Work and Conclusions

What We Did

¢ Created Rialto/NT
> Based on Windows 2000
> Added CPU Reservations & Time Constraints

> Abstractions originally developed within
Rialto real-time system at Microsoft
Research

¢ What’s new
> Coexistence with Windows NT scheduler
> Multiprocessor capability
> Periodic clock

> As opposed to fine-grained individually
scheduled interrupts

Real-Time

¢ Real-time computations have deadlines

¢ Examples
> Fly-by-wire aircraft:
> Missed deadline may endanger the aircraft
> Soft modem:
> Missed deadline may reset the connection
> Video conferencing:

> Missed deadline degrades audio or video
quality

Why not use Windows NT as is?

¢ Real-time using priorities requires global
coordination

> Windows is an open system
> Priority inflation
> No path for timing information

¢ There are scheduling algorithms that do
not require global coordination

> CPU Reservations and Time Constraints
> Apps state timing requirements directly

> Independently developed apps can run
concurrently

Teaser Capability

¢ Apps can ask scheduler:

> “Can I do Sms of work between
now+30ms and now+40ms?”’

¢ Scheduler answers either:
> “I guarantee it” or
> “You probably can’t”

¢ Guaranteeing this Sms work in future

10ms interval does not require reserving
50% of CPU for next 40ms

How did we do it?

¢ Explicitly represent future time

¢ Map app declarations of timing
needs into grants of future time

Enables:
¢ Advance guarantees to applications, or
¢ Denial of requests up front

Introduction
Rialto Background
Windows NT Implementation
Performance and Traces

Related Work and Conclusions

Abstraction: CPU Reservation

¢ Guaranteed execution rate and
granularity for a thread

> X units of time out of every Y units, e.g.
> lms every Sms
> 7.5ms every 33.3ms
> one second every minute

Abstraction: Time Constraint

¢ Deadline-based thread execution
> Guarantees execution within interval, or
> Proactively denies constraint request

schedulable = BeginConstraint (time_interval, estimate);
if (schedulable) then
Do normal work under constraint

else
Transient overload -- shed load if possible
time_taken = EndConstraint ();

Implementation:
Precomputed Scheduling Plan

¢ Tree-based periodic map of time
> Supports widely varying periods

¢ Allocation of future time intervals
> Ongoing for CPU Reservations
> One-shot for Time Constraints

¢ Enables efficient:
> Scheduling decisions
> Feasibility analysis for constraints
> Guarantees for reservations, constraints

Scheduling Plan Example

Thread

A

Amount

4ms

3ms

2ms

Period

20ms

10ms

40ms

Introduction
Rialto Background
Windows NT Implementation
Performance and Traces

Related Work and Conclusions

Using the Windows NT
Scheduler

¢ Rialto/NT uses existing priority
scheduler to schedule its threads

> Rialto/NT elevates thread priorities to
cause dispatching

¢ Existing apps, abstractions work as
before

¢ Windows NT scheduler also can
schedule Rialto/NT threads

Multiprocessor Issues

¢ One scheduling plan per processor
> Tree walking happens on all plans

> Heuristic: add new reservation to plans in
increasing order of processor utilization

¢ Plans not pinned to particular CPUs
> Allow NT scheduler to choose CPU

> Rely on schedule properties, atfinity to
run threads mostly on same CPU

> Permits opportunistic scheduling on other
processors by existing scheduler

Affinity vs. Priority

¢ Rialto/NT counts on priority elevation
to cause thread dispatching

> No contention because at most one
elevated (Rialto/NT) thread per CPU

¢ On MP highest priority threads not
always scheduled

> Heuristics sometimes elevate thread
affinity over thread priority

¢ Changed scheduler to immediately
dispatch Rialto/NT elevated-priority
threads when ready

Discrete Time

¢ Windows NT clock interrupts on
periodic basis

> Typically 10-15ms, HAL-dependent
> Can usually be set to 1ms period

¢ Discrete interrupts limit enforceable
scheduling granularity

¢ So, Rialto/NT:

> Initializes interrupt period to 1ms
> Aligns rescheduling with clock interrupts

Implementation Details

¢ Reschedule runs in DPC context
> Use NT Kkernel timers to schedule DPCs

¢ Rialto/NT threads run at priority 30
> Second highest Windows NT priority
> Other values could be chosen

¢ New plans for reservations computed
in requesting thread context

> Optimistic concurrency control to avoid
perturbing existing schedule

Non-invasive Implementation

¢ Easier to argue correctness

¢ Modified only two kernel routines
> Changed behavior of one

¢ Added to the kernel:
> 6000 lines of C
> 4 system calls

Complication: Unpredictable
Dispatch Latency

¢ When latency occurs we:
> Penalize the running thread
> Keep the schedule on time

¢ Causes of scheduling latency:
> Interrupt handlers
> Kernel code running at high IRQL
> Long DPCs

¢ Latencies controllable through
concerted latency testing discipline

Better Living Through
Simulation

¢ Rialto/NT runs in simulator in
addition to kernel

> Exactly the same sources

¢ Makes some debugging much easier
> Reproducible runs
> Better tools
> No race conditions
> Reboot time not in critical path

Introduction
Rialto Background
Windows NT Implementation
Performance and Traces

Related Work and Conclusions

Test Platform

¢ 333 MHz Pentium II PCs
> 128MB RAM
> Intel EtherExpress Pro
> Adaptec SCSI

¢ Single- and dual-processor tests

Context Switch Time

& Tested:
> 10 threads on released Windows 2000 beta 3
> 10 Rialto/NT threads with CPU Reservations

¢ Rialto/NT adds 8us to median context
switch time

> 0.8% overhead at 1ms scheduling
granularity

Time to Acquire Reservations

Reasonable even in pathological cases

5 _
S s
© 4 - 0000“‘”
e
Q A
o 3 *
X » |
() E *
‘xu ~— 2 1 0‘“’”’ A
E A AMA

LS

"3 1 - rW’A A‘“‘A‘A
E “‘M: “MMA
= s sonssaspbibiarat T aas

0 - I T T T T T

0 10 20 30 40 50 60
Reservation Number

+ Uniprocessor s Dual-processor

Times to begin simultaneous reservations

Time to Acquire Constraints

Reasonable even in pathological cases

—
2]
= A
N g
o 40 -
l§
F & "’“
o 30 - RO A
- — A *e
g_ AA W A‘ “x“’QQQQA
A .

L 20 et e :
- sogtage’e?? te s
c A, M AL A A, AAAAAAA A
la A A M AAAAAMAAAAAA m A
| S
< 10 -
2]
c
S

0 I I I]]]

0 10 20 30 40 50 60
Time Constraint Number

+ Without Reservations » With Reservations

Times to begin simultaneous constraints

Reservations with a
Background Thread

Threads run only during time assigned to their
reservations

mread1temsiaoms) || | O 0| 0L O O L O O O O

1:::::22::?2:% !)l fH %H ﬁ W f [y

Competitor (high priority [
00 450 500 550 600
Time (ms)

1 processor, 3 threads with reservations, 1 high-
priority competitor thread

Reservations and Constraints

Thread 3 gains additional time with constraints

Thread 1 (16ms/40ms D

)

Thread 2 (4ms/20ms)

Thread 3 (1ms/10ms + constr.)
)

Competitor (high priority

i

i

|

)

i

i

!

T | -

400

il B
A

50

500

Time (ms)

550

.....

1 processor, 3 threads with reservations (one also
using constraints), 1 high-priority competitor

thread

Dual Processor Traces

Without affinity change: thread 3 not always scheduled

Thread 1 (32ms/40ms) I
Thread 2 (8ms/20ms)
Thread 3 (2ms/10ms)

)
)

S

.HHH]HI_I AT ,wﬂﬂéﬂ,ﬂ

400 450 500 5 -
Time (ms)

Competitor 1 (high priority

Competitor 2 (high priority

" 800

Competitor 1 (high priority

[l

With affinity change: all threads properly scheduled

Thread 1 (32ms/40ms I M
I T I T ' T T

)
Thread 2 (8ms/20ms)
Thread 3 (2ms/10ms)
)
) — 1 - 1
400 450 500 550 600
Time (ms)

Competitor 2 (high priority

Introduction
Rialto Background
Windows NT Implementation
Performance and Traces

Related Work and Conclusions

Related Work

Real-time add-ins for Windows NT

> RTX from VenturCom, INtime from RadiSys,
Hyperkernel from Imagination Systems

Lin et. al 98

> Windows NT soft real-time scheduling server

Candea & Jones ’98

> Vassal loadable scheduler framework

Lots of reservation- and deadline-based
scheduling work

Further Research

¢ Evaluate when applied to real apps
> Some work submitted to RTAS 2000

¢ Lots of policy issues
> Resource management
> Placement of reservations among CPUs

* & O

Conclusions

Scheduling plan effective on MPs
Plan adapted to use periodic clock

New scheduler cooperatively coexists
with, uses Windows NT scheduler

Rialto/NT brings CPU Reservations
and Time Constraints to Windows NT

Thanks for Your Invitation!

¢ References:
> Latency study published in 1999 RTAS

> Rialto/NT published in 1999 USENIX
Windows NT Symposium

¢ For more on this research see
http://research.microsoft.com/~mbj/

¢ For a great priority inversion story be
sure to follow the What really happened
on Mars? link

