
Predictable Execution:Predictable Execution:
Operating Systems IssuesOperating Systems Issues

Michael B. Jones Ñ Microsoft Research

Joint work with

John Regehr Ñ University of Virginia

Goal: Coexisting IndependentGoal: Coexisting Independent
Real-Time ApplicationsReal-Time Applications

u Independently developed
u Predictable concurrent execution of

Ø real-time and non-real-time apps

u Meeting all appsÕ timing needs
Ø Informing apps when not possible

OverviewOverview

u Developing soft real-time scheduler
for Windows NT
Ø Described in second half of talk

u Predictability issues
Ø How large are observed worst-case

thread scheduling latencies?
Ø What causes them?
Ø What has been done about them?
Ø Described in first half of talk

Part I:Part I:

The Problems YouÕre HavingThe Problems YouÕre Having
May Not Be the Problems YouMay Not Be the Problems You

Think YouÕre Having:Think YouÕre Having:

Results from a Latency StudyResults from a Latency Study
of Windows NTof Windows NT

Research ContextResearch Context

u Developing soft real-time scheduler
for Windows NT

u Predictability issues:
Ø How large are observed worst-case

thread scheduling latencies?
Ø Can they be improved?

u Measured actual latencies

NT Latency ResultsNT Latency Results

u Typically can schedule tasks every
small number of milliseconds

u But ill-behaved drivers, hardware can
take many milliseconds
Ø Software delays of up to 16ms observed
Ø Hardware delays of up to 30ms observed

Results from NT 5, Pentium II-333

Deferred Procedure CallsDeferred Procedure Calls

u Analogous to Unix bottom halves
u Are preempted by interrupts
u Preempt normal threads
u May not block
u Are run in FIFO order
u Typical Uses:

Ø I/O Completion Processing
Ø Background Driver Housekeeping

Non-ProblemsNon-Problems
u Interrupts

Ø Interrupt handlers needing substantial
work queue DPCs

Ø Never observed interrupt handler
taking substantial fraction of ms

u Ethernet Packet Processing
Ø With back-to-back 100Mbit incoming

packets of UDP or TCP data:
Ø Longest observed DPC 600µs
Ø Longest delay of user code ~2ms

u Tested four common Ethernet cards

Problem: ÒUnimportantÓProblem: ÒUnimportantÓ
Background WorkBackground Work

u DEC dc21x4 PCI Fast 10/100 Ethernet
u 6ms periodic DPC every 5s

Ø Autosense processing
u Most of 6ms in five 0.88ms calls to

routine that reads device register that:
Ø Writes a HW register Ð 1.5µs
Ø Stalls for 5µs
Ø Writes HW register again Ð 1.5µs
Ø Stalls for 5µs
Ø Reads a HW register Ð 1.5µs
Ø Stalls for 5µs

u And does this 16 times! (once per bit)

Another Long DPC: Intel EE 16Another Long DPC: Intel EE 16

u Intel EtherExpress 16 ISA Ethernet
u 17ms DPC every 10s
u Card reset for no received packets

Amusing Observation
u Unplugging Ethernet makes latency

worse!
Ø Despite conventional wisdom to the

contrary

Even Worse: Video CardsEven Worse: Video Cards

u Video cards and drivers conspire to
hog the PCI bus

u Dragging large window locks out
interrupts for up to 30ms

u Obliterates sound I/O, for instance
u Can set registry key to ask drivers to

behave, but not default
Ø No problem when set correctly

u ManufacturersÕ motivation:
WinBench ~ 5% improvement

Video CardVideo Card
Misbehavior DetailsMisbehavior Details

u DonÕt check if card FIFO full before write
Ø Eliminate a PCI read

u Stalls PCI bus if full to prevent overflow
Ø Even with AGP, big blits are slow

u Problem observed on:
Ø AccelStar II AGP
Ø Matrox Millenium II

u Several other major cards also do this

Example Bug:Example Bug:
Multimedia TimersMultimedia Timers

u MP HAL uses 976µs interrupt period
u Multimedia timers compute absolute

time for next wakeup in whole ms
Ø Converted to relative wakeup time and

passed to kernel

u Interrupt occurs just before wakeup
Ø Timer doesnÕt fire
Ø Next time, fires twice to catch up

u Fix: compute wakeup in 100ns units

Windows Media PlayerWindows Media Player
Audio DropoutsAudio Dropouts

u Playback glitches when in contention
with other apps

u Concerted effort to find, fix causes
before Windows 2000 ship

Media Player ThreadMedia Player Thread
Structure (Simplified)Structure (Simplified)

Thread Period (ms) Priority

Kernel Mixer 10 24

MP3 Decoder 100 9

Disk Reader 2000 8

User Interface 45 8

MP3 Playback w/o ContentionMP3 Playback w/o Contention

u Working fine
u Kmixer thread (bottom) runs every 10ms
u MP3 decoder (middle) runs every 100ms

Priority Inversion Caused ByPriority Inversion Caused By
Competing ThreadCompeting Thread

u Priority inversion at time 14324ms
u Busy thread (top) preempts decoder thread

while holding kmixer buffer lock
u Kmixer (bottom) starves causing audio dropout

u Fix: Raise priority in decoder to that of kmixer
before acquiring lock
Ø Manual application of Priority Ceiling Protocol

LessonLesson

Your Intuition About
Performance is Wrong

Only Measurement
Reveals the Truth!

Bottom LineBottom Line
u Yes, NT can do RT scheduling
u Have done a prototype

Ø But will be of limited value if
unscheduled activities continue taking
tens of milliseconds

u NT developed, tested for throughput
Ø Not small numbers of ms of latency
Ø Improvement will require

Ø Systematic latency testing
Ø Latency requirements specifications

Progress Since Initial WorkProgress Since Initial Work

u WHQL tests for video drivers
Ø Verify PCI timing with hardware

u Many timing bugs found, fixed
Ø E.g., media player priority inversion

u Attempting to institute systematic
latency specifications and testing
Ø Interrupt hold times & counts
Ø DPC hold times & counts
Ø Standards for use of priority values

Part II:Part II:

CPU Reservations and TimeCPU Reservations and Time
Constraints: ImplementationConstraints: Implementation
Experience on Windows NTExperience on Windows NT

Part II OutlinePart II Outline

IntroductionIntroduction

Rialto BackgroundRialto Background

Windows NT ImplementationWindows NT Implementation

Performance and TracesPerformance and Traces

Related Work and ConclusionsRelated Work and Conclusions

What We DidWhat We Did
u Created Rialto/NT

Ø Based on Windows 2000
Ø Added CPU Reservations & Time Constraints

Ø Abstractions originally developed within
Rialto real-time system at Microsoft
Research

u WhatÕs new
Ø Coexistence with Windows NT scheduler
Ø Multiprocessor capability
Ø Periodic clock

Ø As opposed to fine-grained individually
scheduled interrupts

Real-TimeReal-Time

u Real-time computations have deadlines
u Examples

Ø Fly-by-wire aircraft:
Ø Missed deadline may endanger the aircraft

Ø Soft modem:
Ø Missed deadline may reset the connection

Ø Video conferencing:
Ø Missed deadline degrades audio or video

quality

Why not use Windows NT as is?Why not use Windows NT as is?
u Real-time using priorities requires global

coordination
Ø Windows is an open system

Ø Priority inflation
Ø No path for timing information

u There are scheduling algorithms that do
not require global coordination
Ø CPU Reservations and Time Constraints
Ø Apps state timing requirements directly
Ø Independently developed apps can run

concurrently

Teaser CapabilityTeaser Capability
u Apps can ask scheduler:

Ø ÒCan I do 5ms of work between
now+30ms and now+40ms?Ó

u Scheduler answers either:
Ø ÒI guarantee itÓ or
Ø ÒYou probably canÕtÓ

u Guaranteeing this 5ms work in future
10ms interval does not require reserving
50% of CPU for next 40ms

How did we do it?How did we do it?

u Explicitly represent future time

u Map app declarations of timing
needs into grants of future time

Enables:

u Advance guarantees to applications, or

u Denial of requests up front

IntroductionIntroduction

Rialto BackgroundRialto Background

Windows NT ImplementationWindows NT Implementation

Performance and TracesPerformance and Traces

Related Work and ConclusionsRelated Work and Conclusions

Abstraction: CPU ReservationAbstraction: CPU Reservation

u Guaranteed execution rate and
granularity for a thread
Ø X units of time out of every Y units, e.g.

Ø 1ms every 5ms

Ø 7.5ms every 33.3ms

Ø one second every minute

Abstraction: Time ConstraintAbstraction: Time Constraint

u Deadline-based thread execution
Ø Guarantees execution within interval, or
Ø Proactively denies constraint request

schedulable = BeginConstraint (time_interval, estimate);
if (schedulable) then

Do normal work under constraint
else

Transient overload -- shed load if possible
time_taken = EndConstraint ();

Implementation:Implementation:
Precomputed Scheduling PlanPrecomputed Scheduling Plan
u Tree-based periodic map of time

Ø Supports widely varying periods

u Allocation of future time intervals
Ø Ongoing for CPU Reservations
Ø One-shot for Time Constraints

u Enables efficient:
Ø Scheduling decisions
Ø Feasibility analysis for constraints
Ø Guarantees for reservations, constraints

Scheduling Plan ExampleScheduling Plan Example

Thread A B C D E F
Amount 4ms 3ms 2ms 1ms 1ms 5ms
Period 20ms 10ms 40ms 20ms 10ms 40ms

3 : B 1: E

4: A 2: free

1: D

3: free2: C

5: F

IntroductionIntroduction

Rialto BackgroundRialto Background

Windows NT ImplementationWindows NT Implementation

Performance and TracesPerformance and Traces

Related Work and ConclusionsRelated Work and Conclusions

Using the Windows NTUsing the Windows NT
SchedulerScheduler

u Rialto/NT uses existing priority
scheduler to schedule its threads
Ø Rialto/NT elevates thread priorities to

cause dispatching

u Existing apps, abstractions work as
before

u Windows NT scheduler also can
schedule Rialto/NT threads

Multiprocessor IssuesMultiprocessor Issues
u One scheduling plan per processor

Ø Tree walking happens on all plans
Ø Heuristic: add new reservation to plans in

increasing order of processor utilization

u Plans not pinned to particular CPUs
Ø Allow NT scheduler to choose CPU
Ø Rely on schedule properties, affinity to

run threads mostly on same CPU
Ø Permits opportunistic scheduling on other

processors by existing scheduler

Affinity vs. PriorityAffinity vs. Priority
u Rialto/NT counts on priority elevation

to cause thread dispatching
Ø No contention because at most one

elevated (Rialto/NT) thread per CPU

u On MP highest priority threads not
always scheduled
Ø Heuristics sometimes elevate thread

affinity over thread priority

u Changed scheduler to immediately
dispatch Rialto/NT elevated-priority
threads when ready

Discrete TimeDiscrete Time

u Windows NT clock interrupts on
periodic basis
Ø Typically 10-15ms, HAL-dependent
Ø Can usually be set to 1ms period

u Discrete interrupts limit enforceable
scheduling granularity

u So, Rialto/NT:
Ø Initializes interrupt period to 1ms
Ø Aligns rescheduling with clock interrupts

Implementation DetailsImplementation Details

u Reschedule runs in DPC context
Ø Use NT kernel timers to schedule DPCs

u Rialto/NT threads run at priority 30
Ø Second highest Windows NT priority
Ø Other values could be chosen

u New plans for reservations computed
in requesting thread context
Ø Optimistic concurrency control to avoid

perturbing existing schedule

Non-invasive ImplementationNon-invasive Implementation

u Easier to argue correctness
u Modified only two kernel routines

Ø Changed behavior of one

u Added to the kernel:
Ø 6000 lines of C
Ø 4 system calls

Complication: UnpredictableComplication: Unpredictable
Dispatch LatencyDispatch Latency

u When latency occurs we:
Ø Penalize the running thread
Ø Keep the schedule on time

u Causes of scheduling latency:
Ø Interrupt handlers
Ø Kernel code running at high IRQL
Ø Long DPCs

u Latencies controllable through
concerted latency testing discipline

Better Living ThroughBetter Living Through
SimulationSimulation

u Rialto/NT runs in simulator in
addition to kernel
Ø Exactly the same sources

u Makes some debugging much easier
Ø Reproducible runs
Ø Better tools
Ø No race conditions
Ø Reboot time not in critical path

IntroductionIntroduction

Rialto BackgroundRialto Background

Windows NT ImplementationWindows NT Implementation

Performance and TracesPerformance and Traces

Related Work and ConclusionsRelated Work and Conclusions

Test PlatformTest Platform

u 333 MHz Pentium II PCs
Ø 128MB RAM
Ø Intel EtherExpress Pro
Ø Adaptec SCSI

u Single- and dual-processor tests

Context Switch TimeContext Switch Time

u Tested:
Ø 10 threads on released Windows 2000 beta 3
Ø 10 Rialto/NT threads with CPU Reservations

u Rialto/NT adds 8µs to median context
switch time
Ø 0.8% overhead at 1ms scheduling

granularity

Time to Acquire ReservationsTime to Acquire Reservations
Reasonable even in pathological cases

Times to begin simultaneous reservations

0

1

2

3

4

5

0 10 20 30 40 50 60

Reservation Number

T
im

e
to

 M
ak

e
R

es
er

va
ti

o
n

(m
s

)

Uniprocessor Dual-processor

Time to Acquire ConstraintsTime to Acquire Constraints
Reasonable even in pathological cases

Times to begin simultaneous constraints

0

10

20

30

40

0 10 20 30 40 50 60
Time Constraint Number

C
o

n
st

ra
in

t
A

cq
u

ir
e

T
im

e
(µ

s)

Without Reservations With Reservations

Reservations with aReservations with a
Background ThreadBackground Thread

Threads run only during time assigned to their
reservations

1 processor, 3 threads with reservations, 1 high-
priority competitor thread

Reservations and ConstraintsReservations and Constraints

Thread 3 gains additional time with constraints

1 processor, 3 threads with reservations (one also
using constraints), 1 high-priority competitor
thread

Dual Processor TracesDual Processor Traces
Without affinity change: thread 3 not always scheduled

With affinity change: all threads properly scheduled

IntroductionIntroduction

Rialto BackgroundRialto Background

Windows NT ImplementationWindows NT Implementation

Performance and TracesPerformance and Traces

Related Work and ConclusionsRelated Work and Conclusions

Related WorkRelated Work
u Real-time add-ins for Windows NT

Ø RTX from VenturCom, INtime from RadiSys,
Hyperkernel from Imagination Systems

u Lin et. al Õ98
Ø Windows NT soft real-time scheduling server

u Candea & Jones Õ98
Ø Vassal loadable scheduler framework

u Lots of reservation- and deadline-based
scheduling work

Further ResearchFurther Research

u Evaluate when applied to real apps
Ø Some work submitted to RTAS 2000

u Lots of policy issues
Ø Resource management
Ø Placement of reservations among CPUs

ConclusionsConclusions

u Scheduling plan effective on MPs
u Plan adapted to use periodic clock
u New scheduler cooperatively coexists

with, uses Windows NT scheduler
u Rialto/NT brings CPU Reservations

and Time Constraints to Windows NT

Thanks for Your Invitation!Thanks for Your Invitation!
u References:

Ø Latency study published in 1999 RTAS
Ø Rialto/NT published in 1999 USENIX

Windows NT Symposium

u For more on this research see
http://research.microsoft.com/~mbj/

u For a great priority inversion story be
sure to follow the What really happened
on Mars? link

