
TM

DataBlitz
Main Memory DataBase System

TM

What is DataBlitz ?

¥ DataBlitz is a general purpose Main Memory
DataBase System that enables:
Ð high-speed access to data
Ð concurrent access to shared data
Ð data integrity to be preserved in the presence of faults

or failures

¥ DataBlitz differs from typical commercial
database systems in that:
Ð data is stored in main memory, not on disk
Ð data is accessed directly, not over a network
Ð there is no buffer manager
Ð lower level APIs are exposed to applications

TM

DataBlitzÕs Broad Applicability

¥ DataBlitzÕs high performance {high throughput and short,
predictable response times} makes it an ideal basis for a variety
of purposes.

¥ The fast-emerging world of e-commerce thrives on speed and is
a natural for DataBlitz.

¥ DataBlitz plays an enabling role in web servers as well as in
web infrastructure (cache servers and other web accelerators).

¥ In financial trading, time is money. Even being a minute late
may cause a trader to miss a market move. DataBlitzÕs
performance and strength in transaction processing make it an
ideal basis for on-line stock exchanges as well as for program
traders.

¥ Decision-support systems, currently based on off-line analysis of
information in data warehouses, can be made much more
effective by means of rapid analysis of real-time data based on
DataBlitz.

TM

Target Telecom Applications

¥ Real-time billing:
¥ Bill for up-to-the-moment service and usage
¥ Maintain billing history information
¥ Keep customer and service summaries

¥ Intelligent network applications
¥ 800 number translation
¥ Intelligent 800 number service (via customer logic)
¥ Call screening
¥ Call routing (local number portability, unified messaging, etc.)

¥ Switch-based functions
¥ Switching
¥ Call routing
¥ Call forwarding
¥ Call waiting

TM

High Performance Databases

¥ Characteristics
¥ High throughput with hundreds to thousands of transactions per second
¥ Real-time response on the order of a few milliseconds

¥ Data must be in main memory for performance attainment
¥ Disk accesses have high latency (~20 milliseconds) and low throughput
¥ Main-memory accesses have low latency (~100 nanoseconds) and high

throughtput and memory prices are falling reapidly

CPU
Main

memory
Disk

¥ High latency
¥ Low throughput
¥ Lower cost
¥ Larger size

¥ Low latency
¥ High throughput
¥ Higher cost
¥ Smaller size

TM

Existing Commercial Databases

Most commercial systems assume data is primarily disk-resident

DatabaseNetwork Buffer

RAM

DISK

SERVER

¥ Every access incurs
¥ Network latency

¥ Disk latency

¥ Buffer manager overhead

APPLICATION

TMDataBlitz -
High Performance MMDB System

DataBlitz provides real-time concurrent access

to shared data

Database

RAM

Application
Application

Database
Database

True 64-bit Architecture support !

TM

Locks

Virtual
Memory

DB File 1

SysDB

Physical
Memory

Logs

 DataBlitz Library

 DataBlitz Library

Virtual
Memory

Checkpoint
Images

Log of
Updates

DataBlitz Architecture

Process 1

User Code

Process 2

User Code

DB File 2

DB File 3

TM

Multiple Layers of Abstraction

C++ Relational API

Collections API

Applications can be written to use one of four APIs

Application

Lower level APIs offer simpler functionality and even higher performance

SQL

Storage Manager API

TM

The Modular Architecture
of DataBlitz C++ Relational API

SQL

Collections API
Hash

Indices
TtreesHeap

File

Storage Manager API

Transactions
Recovery/

Fault Resilience
Concurrency

Control
Storage

Allocator

Infrastructure Services

TM

Infrastructure Services

C++ Relational API

SQL

Collections API
Hash

Indices
TtreesHeap

File

Storage Manager API

Transactions
Recovery/

Fault Resilience
Concurrency

Control
Storage

Allocator

Infrastructure Services

TM

Infrastructure Services

¥ Database management

¥ Keeps track of database files in a DataBlitz system

¥ Provides services to create, remove, resize, open, close and coordinate
access to a database file

¥ Manages the virtual address space of processes and keeps track of start
addresses for mapped database files

¥ Allocates/grows the underlying shared memory for a database file

¥ Process management

¥ Keeps track of active processes and resources held by them (e.g. mutexes)

¥ Performs cleanup for a failed process or thread

¥ Communication management

¥ Provides a framework for messaging (local and remote)

¥ Supports client/server remote procedure calls

Database
Management

Process
Management

Communication
Management

TM

Recovery/Fault Resilience

C++ Relational API

SQL

Collections API
Hash

Indices
TtreesHeap

File

Storage Manager API

Transactions
Recovery/

Fault Resilience
Concurrency

Control
Storage

Allocator

Infrastructure Services

TM

Recovery/Fault Resilience

¥ Recovery from system failures

¥ Recovers database to transaction consistent state

¥ Fuzzy checkpointing, multi-level and post-commit logging

¥ Recovery from process failures

¥ Process failures detected and transactions aborted

¥ Recovery from media failures

¥ Creation of and recovery from database archives

¥ Detecting data corruption (due to application errors)
¥ Codeword (one-word checksum) for each database page

¥ Any page written to disk must match codeword

¥ Preventing data corruption (due to application errors)
¥ Uses mprotect call to cause page faults on bad writes

Logging

Recovery
Archive

Checkpoint

Cleanup Codeword
Protection

Memory
Protection

TM

Traditional Recovery Algorithms

¥ Each transaction writes the following to the log tail:

¥ Undo (before image) logs before update

¥ Redo (after image) logs after update

¥ Write-ahead logging

¥ Undo logs are flushed to disk before any affected page is written

¥ Logs are flushed on transaction commit

¥ Recovery in 3 phases

¥ Analysis - find winner and loser transactions

¥ Redo - redo effects of completed transactions

¥ Undo - undo effects of incomplete transactions

¥ Checkpointing

¥ Flush dirty (updated) pages and note transaction information

¥ Discard old part of the log

TM

Recovery from System Failure

¥ Logs all updates on transaction commit/abort

¥ Writes periodic checkpoints of database state

¥ Performs recovery using checkpoint and logs

Database

Redo Log

Undo Log

System Log Tail

End of
Stable Log

Database

ckpt_dpt

Active Trans
Table (ATT)
(undo logs)

Stable System Log

In Main Memory

On Disk

Trans. Local LogsActive Trans. Table

End of
Stable Log

Dirty Page Table

cur_ckpt

Ckpt A

Ckpt B

TM

Datablitz Recovery Algorithm

¥ Repeat history

¥ Low Amount of disk I/O
¥ Redo logs are written to disk

¥ No undo logs to disk normally

¥ Ping-Pong Checkpointing Scheme
¥ Write to alternate disk copies on successive checkpoints

¥ resilient to crashes during checkpointing

¥ Only relevant undo logs written to disk when checkpointing
¥ undo logs of transactions that are active at the end of the

checkpoint

¥ Fuzzy checkpoints
¥ Updates execute concurrently with checkpoints

¥ e.g. No page latching during checkpoints

¥ Only dirty pages written to disk during checkpoints

¥ Single pass recovery algorithm

TM

Extended Logging Support

¥ Logging support for high concurrency
¥ Multi-level logging

¥ Physical undo during updates, logical undo afterward

¥ Post-commit actions
¥ Actions that cannot be rolled back (e.g. freeing storage space)

¥ Support for user-defined operation logging

¥ Time stamp recovery
¥ Recover the database to a transaction-consistent point in the past

¥ Turn redo logging off
¥ Support atomic transactions without requiring them to be durable

TMCodeword Protection

¥ When codeword protection is turned on for a database, a parity-

based checksum (codeword) is maintained for each page, and

updates performed through DataBlitz update the checksum.

¥ The integrity of a page can be tested by this checksum by

detecting errors, such as writes that did not use the DataBlitz

interface, and random writes by means of bad application

pointers.

¥ The integrity of a page is always tested before it is written to

disk, so the disk copy is never corrupted.

¥ The user can also request "codeword audits" at other times.

TM

Memory Protection Support

¥ This allows pages to be protected using the UNIX system call

mprotect().

¥ Pages are unprotected when written, and reprotected on

transaction commit.

¥ While the unprotect and reprotect are slow (by DataBlitz

standards), memory protection can be very useful for

debugging, for read-only databases, and for databases with

relatively low update rates.

TM

Concurrency Control

C++ Relational API

SQL

Collections API
Hash

Indices
TtreesHeap

File

Storage Manager API

Transactions
Recovery/

Fault Resilience
Concurrency

Control
Storage

Allocator

Infrastructure Services

TM

Concurrency Control

¥ Fast recoverable Mutexes
¥ Operating System semaphores are too expensive

¥ Mutexes are implemented in user space for speed (e.g. spin
locks)

¥ Algorithms provided to detect a failed process holding a
mutex

¥ Lock manager
¥ Fine-grained locking (read/write/intention)

¥ Supports lock upgrades/downgrades

¥ Lock table used to obtain named locks with scalable latching

Lock Manager

Lock Table Shared Mutexes

Exclusive Mutexes

TM

Storage Allocator

C++ Relational API

SQL

Collections API
Hash

Indices
TtreesHeap

File

Storage Manager API

Transactions
Recovery/

Fault Resilience
Concurrency

Control
Storage

Allocator

Infrastructure Services

TM

Storage Allocator

¥ Chunks can have different recovery characteristics (zeroed
memory, persistent memory)

¥ Control data stored separately from data
¥ Reduces probability of corruption due to stray application pointers

Start Data

Chunk = collection of segments

Segment = contiguous, page-aligned space

Chunk Manager

Fixed-size
Allocator

Coalescing
Allocator

TM

Storage Allocator

¥ BlzPtrs
¥ Database file plus offset

¥ Enables database files to be mapped anywhere in
the address space of a process

¥ Enables database files to be resized

¥ Size of database can exceed virtual address space
of processes (e.g., 32-bit machines)

¥ Multiple Storage Allocators
¥ Fixed-size allocator

¥ Variable size allocator

¥ Exact fit

¥ Coalesce adjacent free blocks

TM

Transactions

C++ Relational API

SQL

Collections API
Hash

Indices
TtreesHeap

File

Storage Manager API

Transactions
Recovery/

Fault Resilience
Concurrency

Control
Storage

Allocator

Infrastructure Services

TMTransactions

Full Transaction Semantics

¥ Transaction commit, abort, and save point interfaces provide

fault tolerance through internal locking and logging facilities

which deliver (A)tomicity, (C)onsistency, (I)solation, and

(D)urability properties.

¥ Use of transactions greatly eases the task of implementing

systems that handle concurrent programs, and a variety of

failures, while maintaining the integrity of vital data.

TM

Heap File

C++ Relational API

SQL

Collections API
Hash

Indices
TtreesHeap

File

Storage Manager API

Transactions
Recovery/

Fault Resilience
Concurrency

Control
Storage

Allocator

Infrastructure Services

TM

Heap File

¥ The heap file is abstraction for handling a large number of

fixed-length data items, and is implemented as a thin layer

on top of the Storage Manager allocator.

¥ In addition to insertion and deletion, the heap file supports

locking and an unordered scan of items.

¥ Item locks are obtained transparently when items are

inserted, deleted, updated or scanned.

TM

Extendible Hash Indices

C++ Relational API

SQL

Collections API
Hash

Indices
TtreesHeap

File

Storage Manager API

Transactions
Recovery/

Fault Resilience
Concurrency

Control
Storage

Allocator

Infrastructure Services

TM

Extendible Hash IndicesExtendible Hash Indices

DataBlitz offers both fixed and extended hash indices:

¥ Directory grows with number of elements in hash index

¥ Inserts/deletes/scans involving different buckets can execute
concurrently

¥ Directory can grow while inserts/deletes/lookups continue

¥ Ideal for point look-ups on data

¥ Supports varying degrees of isolation (e.g., cursor stability,
phantom)

Directory

Hash headers Hash nodes

TM

Ttree Indices

C++ Relational API

SQL

Collections API
Hash

Indices
TtreesHeap

File

Storage Manager API

Transactions
Recovery/

Fault Resilience
Concurrency

Control
Storage

Allocator

Infrastructure Services

TM

TtreesTtrees Indices Indices

¥ Ordered structure, like an AVL or height balanced tree

¥ Multiple keys per node

¥ Ideal for ordered scans over data

¥ Supports varying degrees of isolation (e.g. Cursor Stability,
Phantom)

Min Max

TM

C++ Relational API

C++ Relational API

SQL

Collections API
Hash

Indices
TtreesHeap

File

Storage Manager API

Transactions
Recovery/

Fault Resilience
Concurrency

Control
Storage

Allocator

Infrastructure Services

TM

C++ Relational APIC++ Relational API

• Supports Hash and Ttree indices on an arbitrary subset of attributes

• Predicate-based scans on tables are supported

• Materialized joins and one-to-many relationships

• Enforces referential integrity constraints

¥ Wide variety of field types
¥ Variable length fields

¥ Date, Time, Decimal, and other numeric types

¥ Null values

¥ Views: simple select project joins on base tables

• Supports different isolation levels (e.g. Cursor Stability, Phantom)

• Schema/Data import/export

Views

DML DDL (SQL)

TM

SQL

C++ Relational API

SQL

Collections API
Hash

Indices
TtreesHeap

File

Storage Manager API

Transactions
Recovery/

Fault Resilience
Concurrency

Control
Storage

Allocator

Infrastructure Services

TM

SQL/JDBC/ODBC Interfaces

¥ DataBlitz builds upon the Dharma/SQL engine to
provide SQL, JDBC, and ODBC support

¥ The Dharma/SQL engine provides feature and
performance parity with leading DBMS vendors

¥ The Dharma/SQL engine is production-proven with a

large installed customer base

¥ Standards conformance
¥ Complete SQL 92 entry level support
¥ ODBC 3.0 (core, level1 and most level 2 APIs)
¥ JDBC 1.2

TM

SQL Interface Features

¥ Query Optimization

¥ Statistics and cost-based
optimization (e.g. query
selectivity, table cardinality,
histograms)

¥ Join order/method selection
for complex queries

¥ Query rewrite algorithms for
nested queries

¥ Join hints for influencing
query execution plans

¥ Run-time optimizations

¥ Compiled/cached SQL for
repeated queries

¥ Multi-tuple fetches/appends

¥ Tuple-level locking support

¥ Execution plan data
pipelining

¥ Complete SQL-92 support
plus
Ð Date/time/interval types

Ð variable length character
strings

Ð Nested queries

Ð Transaction isolation levels

Ð Recursive views

Ð Schema manipulation
statements

¥ Java support

Ð Java stored procedures

Ð Java triggers

Ð JDBC 1.2

TMHigh Performance
Modular Architecture

C++ Relational API

SQL

Collections API
Hash

Indices
TtreesHeap

File

Storage Manager API

Transactions
Recovery/

Fault Resilience
Concurrency

Control
Storage

Allocator

Infrastructure Services

DataBlitz provides:
¥ the highest performance
¥ the most reliability
¥ the most flexibility

TM

Data Replication

¥ Data replication can help improve

¥ System availability (data still available even if site fails)

¥ System performance (replicated data can be accessed locally)

¥ DataBlitz supports Òupdate anywhereÓ replication model

¥ Data is replicated at the granularity of tables

¥ Any site can update/access replicas without consulting other sites

¥ Updates propagated to replicas asynchronously using logs

¥ Conflicts between updates resolved using timestamps

¥ The DataBlitz replication manager guarantees that

¥ Every table update is eventually propagated to every table replica

¥ Table replicas converge to identical state when system is quiesced

TM

DataBlitz site 2

T3T2
Replication
 Manager

Logs

DataBlitz site 3

T1 T3
Replication
 Manager

Logs

DataBlitz site 1

T1 T2
Replication
 Manager

Logs

T1 updates T3 updates

T2 updates

Data Replication

Updates performed at site 1 via T1 propagate to site 3.
Updates performed at site 2 via T2 propagate to site 1.
Updates performed at site 3 via T3 propagate to site 2.

The DataBlitz replication protocol ensures that all sites converge
to the same state.

TM

Data Replication

¥ Handling conflicting updates
¥ Update with largest timestamp wins
¥ Timestamp and update information for loser updates output to a file

¥ Handling ÒnormalÓ site failures
¥ After site recovers, it resumes propagating updates and applying

updates to replicated tables (shipped to it from other sites)

¥ Handling extended outages
¥ Logs for certain updates to be applied at recovering site may have

been truncated
¥ After site recovers, it merges the most recent copy of the table from an

operational site with its own copy of the table

TM

Hot Spare Using Replication

PrimaryPrimary BackupBackup
LogsLogs

Client

System PairSystem Pair

¥ Hot spare is the backup or secondary system
¥ Keeps in sync with the primary via logs

¥ Higher availablity as the backup takes over when the primary fails

¥ Once the backup has taken over, it becomes the primary. The
original primary would then become the secondary.

TM

Additional DataBlitz Features

¥ Thread-safe

¥ Concurrent thread access to DataBlitz

¥ True 64-bit architecture support

¥ Database files greater than 4GB

¥ Configurability

¥ Can turn features on and off (e.g., logging, locking)

¥ Can fine tune various system parameters (e.g. number of
chunks, maximum database files, active transaction table size)

¥ Bulk loading

¥ Extremely fast data loading while locking and logging are
disabled

TM

DataBlitz System Servers

¥ Root server

¥ Initializes system structures (e.g. lock table)

¥ Checkpoint server

¥ Checkpoints database files periodically

¥ Flush server

¥ Writes logs to disk asynchronously

¥ Cleanup server

¥ Detects failed processes and co-ordinates cleanup

¥ Recovery server

¥ Recovers a database in response to data corruption

¥ Mlock server

¥ Memory locks performance critical database files in memory

TMDataBlitz System Tools

¥ Data Migration
¥ Tools for transfering schema information or table data between

databases and files
¥ Tools for transfering relational data in tabular form

¥ RelDDL
¥ A stand-alone tool used for data definitions in standard SQL syntax

¥ Administrative GUI
¥ Monitor system resource usage

¥ Storage space (segments, bytes allocated in a chunk)
¥ Servers, processes, threads
¥ Transactions, locks

¥ Perform archives/restore
¥ Change configuration parameters

¥ Archive/Restore
¥ C++ API and command line interpreter for database backups

¥ Resource Monitoring/Checking
¥ C++ API and command line interpreter for checking usage of

resources

TM

DataBlitz
Main Memory DataBase System

Multiple Interface Layers

Fastest M
ain Memory

Database System

HighAvailability

Concurrency

Flexibility

True64-bitsupport

