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What is DataBlitz ?

¥ DataBlitz is a general purpose Main Memory
DataBase System that enables:
Ð high-speed access to data
Ð concurrent access to shared data
Ð data integrity to be preserved in the presence of faults

or failures

¥ DataBlitz differs from typical commercial
database systems in that:
Ð data is stored in main memory, not on disk
Ð data is accessed directly, not over a network
Ð there is no buffer manager
Ð lower level APIs are exposed to applications
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DataBlitzÕs Broad Applicability

¥ DataBlitzÕs high performance {high throughput and short,
predictable response times} makes it an ideal basis for a variety
of purposes.

¥ The fast-emerging world of e-commerce thrives on speed and is
a natural for DataBlitz.

¥ DataBlitz plays an enabling role in web servers as well as in
web infrastructure (cache servers and other web accelerators).

¥ In financial trading, time is money.  Even being a minute late
may cause a trader to miss a market move.  DataBlitzÕs
performance and strength in transaction processing make it an
ideal basis for on-line stock exchanges as well as for program
traders.

¥ Decision-support systems, currently based on off-line analysis of
information in data warehouses, can be made much more
effective by means of rapid analysis of real-time data based on
DataBlitz.
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Target Telecom Applications

¥ Real-time billing:
¥ Bill for up-to-the-moment service and usage
¥ Maintain billing history information
¥ Keep customer and service summaries

¥  Intelligent network applications
¥ 800 number translation
¥ Intelligent 800 number service (via customer logic)
¥ Call screening
¥ Call routing (local number portability, unified messaging, etc.)

¥ Switch-based functions
¥ Switching
¥ Call routing
¥ Call forwarding
¥ Call waiting



TM

High Performance Databases

¥ Characteristics
¥ High throughput with hundreds to thousands of transactions per second
¥ Real-time response on the order of a few milliseconds

¥ Data must be in main memory for performance attainment
¥ Disk accesses have high latency (~20 milliseconds) and low throughput
¥ Main-memory accesses have low latency (~100 nanoseconds) and high

throughtput and memory prices are falling reapidly

CPU
Main 

memory
Disk

¥ High latency
¥ Low throughput
¥ Lower cost
¥ Larger size

¥ Low latency
¥ High throughput
¥ Higher cost
¥ Smaller size
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Existing Commercial Databases

Most commercial systems assume data is primarily disk-resident

DatabaseNetwork Buffer

RAM

DISK

SERVER

¥ Every access incurs
¥ Network latency

¥ Disk latency

¥ Buffer manager overhead

APPLICATION



TMDataBlitz -
High Performance MMDB System

DataBlitz  provides real-time concurrent access

to shared data
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True 64-bit Architecture support !
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Multiple Layers of Abstraction

C++ Relational API

Collections API

Applications can be written to use one of four APIs

Application

Lower level APIs offer simpler functionality and even higher performance

SQL

Storage Manager API
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The Modular Architecture
of DataBlitz C++ Relational API
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Infrastructure Services

C++ Relational API
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Infrastructure Services

¥ Database management

¥ Keeps track of database files in a DataBlitz system

¥ Provides services to create, remove, resize, open, close and coordinate
access to a database file

¥ Manages the virtual address space of processes and keeps track of start
addresses for mapped database files

¥ Allocates/grows the underlying shared memory for a database file

¥ Process management

¥ Keeps track of active processes and resources held by them (e.g. mutexes)

¥ Performs cleanup for a failed process or thread

¥ Communication management

¥ Provides a framework for messaging (local and remote)

¥ Supports client/server remote procedure calls

Database
Management

Process
Management

Communication
Management



TM

Recovery/Fault Resilience

C++ Relational API
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Recovery/Fault Resilience

¥ Recovery from system failures

¥ Recovers database to transaction consistent state

¥ Fuzzy checkpointing, multi-level and post-commit logging

¥ Recovery from process failures

¥ Process failures detected and transactions aborted

¥ Recovery from media failures

¥ Creation of and recovery from database archives

¥ Detecting data corruption (due to application errors)
¥ Codeword (one-word checksum) for each database page

¥ Any page written to disk must match codeword

¥ Preventing data corruption (due to application errors)
¥ Uses mprotect call to cause page faults on bad writes

Logging

Recovery
Archive

Checkpoint

Cleanup Codeword
Protection

Memory
Protection
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Traditional Recovery Algorithms

¥ Each transaction writes the following to the log tail:

¥ Undo (before image) logs before update

¥ Redo (after image) logs after update

¥ Write-ahead logging

¥ Undo logs are flushed to disk before any affected page is written

¥ Logs are flushed on transaction commit

¥ Recovery in 3 phases

¥ Analysis - find winner and loser transactions

¥ Redo - redo effects of completed transactions

¥ Undo - undo effects of incomplete transactions

¥ Checkpointing

¥ Flush dirty (updated) pages and note transaction information

¥ Discard old part of the log
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Recovery from System Failure

¥ Logs all updates on transaction commit/abort

¥ Writes periodic checkpoints of database state

¥ Performs recovery using checkpoint and logs
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Datablitz Recovery Algorithm

¥ Repeat history

¥ Low Amount of disk I/O
¥ Redo logs are written to disk

¥ No undo logs to disk normally

¥ Ping-Pong Checkpointing Scheme
¥ Write to alternate disk copies on successive checkpoints

¥ resilient to crashes during checkpointing

¥ Only relevant undo logs written to disk when checkpointing
¥ undo logs of transactions that are active at the end of the

checkpoint

¥ Fuzzy checkpoints
¥ Updates execute concurrently with checkpoints

¥ e.g. No page latching during checkpoints

¥ Only dirty pages written to disk during checkpoints

¥ Single pass recovery algorithm
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Extended Logging Support

¥ Logging support for high concurrency
¥ Multi-level logging

¥ Physical undo during updates, logical undo afterward

¥ Post-commit actions
¥ Actions that cannot be rolled back (e.g. freeing storage space)

¥ Support for user-defined operation logging

¥ Time stamp recovery
¥ Recover the database to a transaction-consistent point in the past

¥ Turn redo logging off
¥ Support atomic transactions without requiring them to be durable



TMCodeword Protection

¥ When codeword protection is turned on for a database, a parity-

based checksum (codeword) is maintained for each page, and

updates performed through DataBlitz update the checksum.

¥ The integrity of a page can be tested by this checksum by

detecting errors, such as writes that did not use the DataBlitz

interface, and random writes by means of bad application

pointers.

¥ The integrity of a page is always tested before it is written to

disk, so the disk copy is never corrupted.

¥ The user can also request "codeword audits" at other times.
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Memory Protection Support

¥ This allows pages to be protected using the UNIX system call

mprotect().

¥ Pages are unprotected when written, and reprotected on

transaction commit.

¥ While the unprotect and reprotect are slow (by DataBlitz

standards), memory protection can be very useful for

debugging, for read-only databases, and for databases with

relatively low update rates.
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Concurrency Control

C++ Relational API
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Concurrency Control

¥ Fast recoverable Mutexes
¥ Operating System semaphores are too expensive

¥ Mutexes are implemented in user space for speed (e.g. spin
locks)

¥ Algorithms provided to detect a failed process holding a
mutex

¥ Lock manager
¥ Fine-grained locking (read/write/intention)

¥ Supports lock upgrades/downgrades

¥ Lock table used to obtain named locks with scalable latching

Lock Manager

Lock Table Shared Mutexes

Exclusive Mutexes
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Storage Allocator
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Storage Allocator

¥ Chunks can have different recovery characteristics (zeroed
memory, persistent memory)

¥ Control data stored separately from data
¥ Reduces probability of corruption due to stray application pointers

Start Data

Chunk = collection of segments

Segment = contiguous, page-aligned space

Chunk Manager

Fixed-size
Allocator

Coalescing 
Allocator
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Storage Allocator

¥ BlzPtrs
¥ Database file plus offset

¥ Enables database files to be mapped anywhere in
the address space of a process

¥ Enables database files to be resized

¥ Size of database can exceed virtual address space
of processes (e.g., 32-bit machines)

¥ Multiple Storage Allocators
¥ Fixed-size allocator

¥ Variable size allocator

¥ Exact fit

¥ Coalesce adjacent free blocks
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Transactions
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Full Transaction Semantics

¥ Transaction commit, abort, and save point interfaces provide

fault tolerance through internal locking and logging facilities

which deliver (A)tomicity, (C)onsistency, (I)solation, and

(D)urability properties.

¥ Use of transactions greatly eases the task of implementing

systems that handle concurrent programs, and a variety of

failures, while maintaining the integrity of vital data.
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Heap File
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Heap File

¥ The heap file is abstraction for handling a large number of

fixed-length data items, and is implemented as a thin layer

on top of the Storage Manager allocator.

¥ In addition to insertion and deletion, the heap file supports

locking and an unordered scan of items.

¥ Item locks are obtained transparently when items are

inserted, deleted, updated or scanned.
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Extendible Hash Indices
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Extendible Hash IndicesExtendible Hash Indices

DataBlitz offers both fixed and extended hash indices:

¥ Directory grows with number of elements in hash index

¥ Inserts/deletes/scans involving different buckets can execute
concurrently

¥ Directory can grow while inserts/deletes/lookups continue

¥ Ideal for point look-ups on data

¥ Supports varying degrees of isolation (e.g., cursor stability,
phantom)

Directory

Hash headers Hash nodes
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Ttree Indices

C++ Relational API
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TtreesTtrees Indices Indices

¥ Ordered structure, like an AVL or height balanced tree

¥ Multiple keys per node

¥ Ideal for ordered scans over data

¥ Supports varying degrees of isolation (e.g. Cursor Stability,
Phantom)

Min Max
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C++ Relational API
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C++ Relational APIC++ Relational API

• Supports Hash and Ttree indices on an arbitrary subset of attributes

• Predicate-based scans on tables are supported

• Materialized joins and one-to-many relationships

• Enforces referential integrity constraints

¥ Wide variety of field types
¥ Variable length fields

¥ Date, Time, Decimal, and other numeric types

¥ Null values

¥ Views:  simple select project joins on base tables

• Supports different isolation levels (e.g. Cursor Stability, Phantom)

• Schema/Data import/export

Views

DML DDL (SQL)
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SQL
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SQL/JDBC/ODBC Interfaces

¥ DataBlitz builds upon the Dharma/SQL engine to
provide SQL, JDBC, and ODBC support

¥ The Dharma/SQL engine provides feature and
performance parity with leading DBMS vendors

¥ The Dharma/SQL engine is production-proven with a

large installed customer base

¥ Standards conformance
¥ Complete SQL 92 entry level support
¥ ODBC 3.0 (core, level1 and most level 2 APIs)
¥ JDBC 1.2
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SQL Interface Features

¥ Query Optimization

¥ Statistics and cost-based
optimization (e.g. query
selectivity, table cardinality,
histograms)

¥ Join order/method selection
for complex queries

¥ Query rewrite algorithms for
nested queries

¥ Join hints for influencing
query execution plans

¥ Run-time optimizations

¥ Compiled/cached SQL for
repeated queries

¥ Multi-tuple fetches/appends

¥ Tuple-level locking support

¥ Execution plan data
pipelining

¥ Complete SQL-92 support
plus
Ð Date/time/interval types

Ð variable length character
strings

Ð Nested queries

Ð Transaction isolation levels

Ð Recursive views

Ð Schema manipulation
statements

¥ Java support

Ð Java stored procedures

Ð Java triggers

Ð JDBC 1.2



TMHigh Performance
Modular Architecture
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DataBlitz provides:
¥  the highest performance
¥  the most reliability
¥  the most flexibility
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Data Replication

¥ Data replication can help improve

¥ System availability (data still available even if site fails)

¥ System performance (replicated data can be accessed locally)

¥ DataBlitz supports Òupdate anywhereÓ replication model

¥ Data is replicated at the granularity of tables

¥ Any site can update/access replicas without consulting other sites

¥ Updates propagated to replicas asynchronously using logs

¥ Conflicts between updates resolved using timestamps

¥ The DataBlitz replication manager guarantees that

¥ Every table update is eventually propagated to every table replica

¥ Table replicas converge to identical state when system is quiesced
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DataBlitz     site 2

T3T2
Replication
 Manager

Logs

DataBlitz    site 3

T1 T3
Replication
 Manager

Logs

DataBlitz   site 1

T1 T2
Replication
 Manager

Logs

T1 updates T3 updates

T2 updates

Data Replication

Updates performed at site 1 via T1 propagate to site 3.
Updates performed at site 2 via T2 propagate to site 1.
Updates performed at site 3 via T3 propagate to site 2.

The DataBlitz replication protocol ensures that all sites converge
to the same state.
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Data Replication

¥ Handling conflicting updates
¥ Update with largest timestamp wins
¥ Timestamp and update information for loser updates output to a file

¥ Handling ÒnormalÓ site failures
¥ After site recovers, it resumes propagating updates and applying

updates to replicated tables (shipped to it from other sites)

¥ Handling extended outages
¥ Logs for certain updates to be applied at recovering site may have

been truncated
¥ After site recovers, it merges the most recent copy of the table from an

operational site with its own copy of the table
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Hot Spare Using Replication

PrimaryPrimary BackupBackup
LogsLogs

Client

System PairSystem Pair

¥ Hot spare is the backup or secondary system
¥ Keeps in sync with the primary via logs

¥ Higher availablity as the backup takes over when the primary fails

¥ Once the backup has taken over, it becomes the primary. The
original primary would then become the secondary.
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Additional DataBlitz Features

¥ Thread-safe

¥ Concurrent thread access to DataBlitz

¥ True 64-bit architecture support

¥ Database files greater than 4GB

¥ Configurability

¥ Can turn features on and off (e.g., logging, locking)

¥ Can fine tune various system parameters (e.g. number of
chunks, maximum database files, active transaction table size)

¥ Bulk loading

¥ Extremely fast data loading while locking and logging are
disabled
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DataBlitz System Servers

¥ Root server

¥ Initializes system structures (e.g. lock table)

¥ Checkpoint server

¥ Checkpoints database files periodically

¥ Flush server

¥ Writes logs to disk asynchronously

¥ Cleanup server

¥ Detects failed processes and co-ordinates cleanup

¥ Recovery server

¥ Recovers a database in response to data corruption

¥ Mlock server

¥ Memory locks performance critical database files in memory



TMDataBlitz System Tools

¥ Data Migration
¥ Tools for transfering schema information or table data between

databases and files
¥ Tools for transfering relational data in tabular form

¥ RelDDL
¥ A stand-alone tool used for data definitions in standard SQL syntax

¥ Administrative GUI
¥ Monitor system resource usage

¥ Storage space (segments, bytes allocated in a chunk)
¥ Servers, processes, threads
¥ Transactions, locks

¥ Perform archives/restore
¥ Change configuration parameters

¥ Archive/Restore
¥ C++ API and command line interpreter for database backups

¥ Resource Monitoring/Checking
¥ C++ API and command line interpreter for checking usage of

resources
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DataBlitz
Main Memory DataBase System

Multiple Interface Layers

Fastest M
ain Memory

Database System

HighAvailability

Concurrency

Flexibility

True64-bitsupport


