Cyber-Attacks against AI Stack in Autonomous Driving & Intelligent Transportation

Qi Alfred Chen

Assistant Professor, UC Irvine

<u>A</u>utonomous & <u>S</u>mart <u>S</u>ystems <u>Guard</u> Research Group

A bit about myself & my group

- Assistant Professor of Computer Science, UC Irvine (2018)
 - Ph.D., University of Michigan
- Group: AS²Guard (<u>A</u>utonomous & <u>S</u>mart <u>Systems</u> <u>Guard</u>)
- Expertise: AI/Systems/Network Security, mainly in mobile/CPS/IoT

<u>A</u>utonomous & <u>S</u>mart <u>S</u>ystems <u>Guard</u> Research Group

Impact: Demo & vulnerability report

My research so far in mobile/CPS/IoT security

• CPS AI Security

- Autonomous Driving (AD) [ACM CCS'19, Usenix Security'20 (a), '20 (b), '21, IEEE S&P'21, NDSS'22, CVPR'22, ICLR'20]
- Intelligent transportation [NDSS'18, TRB'18,'19,'20, ITS'21]
- Network Security
 - **Connected Vehicle (CV)** [Usenix Security'21]
 - Automotive IoT [Usenix Security'20, NDSS'20]
 - Network protocol [ACM CCS'15,'18, IEEE S&P'16]
- UI (User Interface) Security
 - Smartphone [Usenix Security'14, MobiSys'19]
- Access Control / Policy Enforcement
 - Smartphone [NDSS'16]
 - Smart home [NDSS'17]
- Side Channel
 - Smartphone [Usenix Security'14]
 - Network [ACM CCS'15]

Most recent focus (2018-). CPS Al security

•

CPS AI Security

- Autonomous Driving (AD) [ACM CCS'19, Usenix Security'20 (a), '20 (b), '21, IEEE S&P'21, NDSS'22, CVPR'22, ICLR'20]
- Intelligent transportation [NDSS'18, TRB'18,'19,'20, ITS'21]

- Relatively new area:
 - Al security: Since 2013 [Szegedy et al., "Intriguing properties of neural networks"]
 - Al penetration in real-world CPS (e.g., since ~2015 in automotive industry)

Cumulative Number of Adversarial Example Papers 1000 2014 2016 2018 2020 2022 Year

More recently, massive kinds of AI-enabled autonomous systems coming into real life

Current focus (2018-): Automotive & transportation domain

Autonomous Driving (AD)

V2X-based Intelligent Transp.

Current focus (2018-): Automotive & transportation domain

V₂X-based Intelligent Transp.

Autonomous Driving (AD)

Al stack: "brain" for autonomous Al decision-making

Today: Cyber-attack surface to AD & V2X-based transp. Al

Intelligent traffic light

Today: Cyber-attack surface to AD & V2X-based transp. Al

Localization is safety-critical to AD vehicles

GPS and spoofing attack

- GPS is the *de facto* location input for AD localization
- GPS spoofing attacks
 - Attacker sets **arbitrary position** by sending fake satellite signals
 - Still an **open problem** in civilian GPS
 - Demonstrated on cars, yachts, drones, etc.

[Bhatti et al., NAVIGATION'17]

GPS spoofing is pervasive!

Over 9,883 spoofing events identified; 1,311 civilian vessels affected since Feb. 2016 in Russia.

Source: Above Us Only Stars @ C4ADS

Multi-Sensor Fusion (MSF) based AD localization

- However, production high-level AD systems widely adopt MSFbased localization design
 - Baidu Apollo, [ICRA'18] [ITS'16] [IV'16] [Sensors'15] [IROS'13] [IJRR'11], etc.
 - Leverage strengths & compensate weaknesses of different sensors to improve accuracy & robustness
 - Commonly fuse from GPS, LiDAR, and IMU
 - Can achieve *5.4 cm* localization accuracy
- In such a design, GPS alone cannot dictate the localization results

MSF: Generally believed to have potential to defend against GPS spoofing

Sensor Fusion: Resilient estimation algorithms usually assume a variety of multi-modal sensors to achieve their security guarantees. This is also the idea behind sensor fusion, where sensors of different types can help "confirm" the measurement of other sensors [134, 135, 136]. A basic example of sensor fusion in automotive systems is to verify that both the Li-DAR readings and the camera measurements report consistent observations.

[Cardenas, CyBOK '19]

Sensor fusion: Combining data from multiple distinct sensors, known as *sensor fusion* [3], significantly raises the difficulty of sensor input spoofing attacks. As an ex-

[Davidson et al., WOOT '16]

We hope the results can help to raise the attention in the community to develop *practically deployable* defense mechanisms (*e.g.*, location verification, signal authentication, sensor fusion) to protect the massive GPS device users and emerging GPS-enabled autonomous systems.

[Zeng et al., USENIX Security '18]

SENSOR FUSION

As should be apparent from earlier discussions, different technologies available for detection and tracking of UAVs have various trade-offs related to cost, accuracy, precision, range, energy efficiency (critical if sensors operate on batteries),

This research presented a statistical approach to the problem of attack detection on the multi-sensor integration of autonomous vehicle navigation systems. Starting with a statespace model of the system under attack, a parametric statistical tool with a multi-sensor integration strategy was developed to identify an attack. Finally, a simulation was designed to verify the proposed detection system and results were presented. A l at other UAVs), example, while nly operate very mputer vision), NLOS environes). For accurate JAVs, data fusion Isly use informaors carry critical for joint use of coustic sensors, n optical camer-

[Lee et al., SMC '17]

as), and this constitutes an open research area.

[Guvenc et al., IEEE Comm '18]

- - - -

MSF: Generally believed to have potential to defend against GPS spoofing

Sensor Fusion: Resilient estimation algorithms usually assume a variety of multi-modal sensors to achieve their security guarantees. This is also the idea behind sensor fusion, where sensors of different types can help "confirm" the measurement of other sensors [134, 135, 136]. A basic example of sensor fusion in automotive systems is to verify that both the Li-DAR readings and the camera measurements report consistent observations.

[Cardenas, CyBOK '19]

Sensor fusion: Combining data from multiple distinct sensors, known as *sensor fusion* [3], significantly raises

Research Question:

SENSOR FUSION

As should be apparent from earlier discussions, different technologies available for detection and tracking of UAVs have various trade-offs related to cost, accuracy, precision, range, energy efficiency (critical if sensors operate on batteries),

This research presented a statistical approach to the problem of attack detection on the multi-sensor integration of autonomous vehicle navigation systems. Starting with a statespace model of the system under attack, a parametric statistical l at other UAVs), example, while nly operate very omputer vision), i NLOS environ-

In AD settings, whether state-of-the-art MSF algorithms are indeed sufficiently secure under GPS spoofing?

Our work: FusionRipper

[Usenix Security'20]

- *First* to study the security of MSF-based AD localization in practical settings
- Problem formulation
 - Attacker tailgates a victim AD vehicle & perform GPS spoofing
 - Aim to **maximize lateral deviation** in MSF output w.r.t. no attack
- Attack goals: cause victim to drive **off-road** or onto a **wrong-way**

Security analysis

- Aim to find **maximum possible deviation** achievable by spoofing
- <u>Target</u>: Apollo MSF (representative in both design & impl.)
- <u>Dataset</u>: Real-world sensor traces + synthetic trace (w/o noise)
- <u>Methodology</u>: Split trace to attack windows & perform exhaustive search
- <u>Success metric</u>: MSF output deviation
- <u>Results</u>:
 - Synthetic: 100% < 0.076m</p>
 - Far from reaching any attack goal
 - By design, SOTA MSF is resilient enough to GPS spoofing
 - Real-world: 76% < 0.895m</p>
 - Majority failed to reach even smallest attack goal
 - Takeaway: MSF indeed generally improves security against GPS spoofing

Attack Goal	Local	Highway
Off-Road	o.895 m	1.945 m
Wrong-Way	2.405 m	2.855 m

Finding: Take-over vulnerability

- Still, some windows in real-world trace can achieve large deviations
 - 13% attack windows satisfy all attack goals (>= 2.855 m)
- Find that they all exhibit an interesting take-over effect, causing an exponential growth trend of deviations

Finding: Take-over vulnerability

- Still, some windows in real-world trace can achieve large deviations
 - 13% attack windows satisfy all attack goals (>= 2.855 m)
- Find that they all exhibit an interesting take-over effect, causing an exponential growth trend of deviations
 - Similar to when GPS is the only source
 - Spoofed GPS inputs become **dominating** source to MSF \rightarrow Later LiDAR becomes outlier!

Finding: Take-over vulnerability

- Still, some windows in real-world trace can achieve large deviations
 - 13% attack windows satisfy all attack goals (>= 2.855 m)
- Find that they all exhibit an interesting take-over effect, causing an exponential growth trend of deviations
 - Similar to when GPS is the only source
 - Spoofed GPS inputs become **dominating** source to MSF \rightarrow Later LiDAR becomes outlier!

Cause analysis

- <u>Methodology</u>: Identify possible contributing factors in MSF design, perform correlation analysis to reason causality
- <u>Finding</u>: Mainly appear in time periods when MSF state & LiDAR localization outputs have low confidence
 - In such periods, MSF takes more update from GPS → Allows GPS inputs to dominate the fusion process
 - Created by **dynamic** & **non-deterministic** factors
 - Sensor noises, algorithm inaccuracies (e.g., LiDAR locator)
 - That's why it's not observed in noise-free synthetic traces!
- Even with **high-end AD sensors**, these factors are **large & frequent enough** for GPS spoofing to practically exploit

Exploit take-over vulnerability

- It is **highly attractive** for attacker to exploit take-over vulnerability
 - Attacker can reach **arbitrary** deviation goal
- However, hard to predict/control by attacker
- Needs to exploit in an **opportunistic** way
- Design a 2-stage attack: vulnerability profiling + aggressive spoofing

Evaluation

- <u>Main target</u>: Apollo MSF binary
- Datasets:
 - Apollo trace for MSF localization
 - KAIST Complex Urban
- Success metric:

Attack goal	Local	Highway
Off-Road	0.895 m	1.945 m
Wrong-Way	2.405 m	2.855 m

- Effectiveness results
 - When min. attack duration is 2 min, can achieve **98.6%** & **95.9%** success rates for off-road attack & wrong-way attack
 - Takes only ~30 sec to succeed

Evaluation

- <u>Main target</u>: Apollo MSF binary
- Datasets:
 - Apollo trace for MSF localization
 - KAIST Complex Urban
- <u>Success metric</u>:

Attack goal	Local	Highway
Off-Road	0.895 m	1.945 m
Wrong-Way	2.405 m	2.855 m

- Effectiveness results
 - When min. attack duration is 2 min, can achieve **98.6%** & **95.9%** success rates for off-road attack & wrong-way attack
 - Takes only ~30 sec to succeed

Achievable deviation is not limited to wrong-way driving on highway

Attack demo

- <u>Setup</u>: Apollo 5.0 + LGSVL
- <u>Demo location</u>: Our website (<u>https://sites.google.com/view/cav-sec/fusionripper</u>)

Attack demo

- All materials: <u>https://sites.google.com/view/cav-sec/fusionripper</u>
- Also have evaluations for ablation study, robustness, generality (w/ 2 other MSFs), comparison w/ naive attack, black-box attack design (profiling cost <= half a day), etc.

ber)

- See our paper for more details (can be found on the website as well)
- Defense?

Set

- Fundamental solutions are not immediately deployable
 - E.g., prevent GPS spoofing, improve sensing and AD localization tech
- GPS spoofing detection: Can make attack harder, but not a solved problem yet
 - All existing techniques have known evasion methods [Psiaki & Humphrey, Proc. IEEE'16]
- Thus, the AI stack should always be prepared for GPS spoofing
 - Call for defense designs at the AI stack!

Today: Cyber-attack surface to AD & V2X-based transp. Al

Today: Cyber-attack surface to AD & V2X-based transp. AI

Background: CV (Connected Vehicle)/V2X (Vehicleto-Everything) technology

- Wirelessly connect vehicles & infrastructure to dramatically improve mobility, safety, & convenience
- Expect to **soon** transform transportation systems today
 - 2016.9, USDOT launched CV Pilot Program

CV/V2X-enabled transportation AI

Intelligent traffic light

CV/V2X-enabled transportation AI security

CV/V2X-enabled transportation AI security

Safety w (e.g., fo collision v

Malicious vehicle owners deliberately control OBU to broadcast spoofed CV data

- OBU itself can be compromised physically¹, wirelessly², or by malware³
 - Compromise OBU input using sensor attacks

CV/V2X-enabled transportation AI security

Safety warnings (e.g., forward collision warning)

Cooperative Driving Automation (e.g., platoon)

<u>Prior works</u>: Discovered that spoofing attacks can cause **collision** or **significant traffic flow instability** [IEEE Comm. Mag.'15, ..., RAID'19]

 However, all relying on manual analysis --- timeconsuming, incomplete, & error-prone

Our work: CVAnalyzer

[Usenix Security'21]

- First automatic vulnerability discovery method in CV protocols using model checking
 - Applicable to both *network-layer CV protocols* (e.g., IEEE 1609 protocol family) & *application-layer protocols* (e.g., cooperative driving Al protocol such as platoon management)
 - Focused on *availability* property
 - I.e., application layer should be always able to consume valid incoming packets
 - E.g, all CV devices should eventually learn unknown certificates; all platoon members should eventually switch to idle state
 - *Important* since its violations can prevent legitimate protocol participants from accessing critical services
 - E.g., can delay/prevent the receiving of safety-critical CV messages (e.g., forward collision warning) → collisions

- <u>Main challenge</u>: State explosion
- <u>Solution</u>: Identify problem-specific state reduction strategies to eliminate unnecessary states while still preserving soundness
 - Strategy #1: Find equivalent classes in inputs that will by design trigger the same state transitions → Reduce the state input space
 - E.g., the use of 3-byte hashes to match certificates in CV
 - Strategy #2: Leverage differences between attacker's action space
 & those of benign vehicles → Reduce state space
 - E.g., attackers can send arbitrary fake certificate ids, but benign vehicle will only send its own
 - Effectiveness improvement: unfinished after >24 hrs → finish < 2hrs

- **19 discovered vuln (18 new** compared to manual discovery in prior works!)
 - 4 (all new) from P2PCD (Peer-to-Peer Certificate Distribution) protocol in IEEE 1609
 - 15 (14 new) from 2 popular platoon protocols (VENTOS, PLEXE)!

ID	Name	Implications
N1	Response Mute	Stop the CV device from sending learning responses
N2, N3	Request Mute	Stop the CV device from sending learning requests
N4	Numb	Stop the CV device from recording unknown certificates
A1, A2	(Prerequisites)	Cause traffic collision [1], lead to A3-15
A3, A4	Split Trigger	Interfere the traffic flow stability, decrease efficiency and safety
A5-14	PMP Block	Prevent platoon members from performing any maneuvers
A15	Inconsistency	Lead to failures of the split maneuver and the leader/follower leave maneuver

- **19 discovered vuln (18 new** compared to manual discovery in prior works!)
 - 4 (all new) from P2PCD (Peer-to-Peer Certificate Distribution) protocol in IEEE 1609
 - 15 (14 new) from 2 popular platoon protocols (VENTOS, PLEXE)!

ID	Name	Implications	
N1	Response Mute	Stop the CV device from sending learning responses	
N2, N3	Request Mute	Stop the CV device from sending learning requests	
N4	Numb	Stop the CV device from recording unknown certificates	
A1, A2	(Prerequisites) Cause traffic collision ^[1] , lead to A3-15		
A3, A4	Split Trigger	Interfere the traffic flow stability, decrease efficiency and sa	ıfety
A5-14	PMP Block	Prevent platoon members from performing any maneuvers	
A15	Inconsistency	Lead to failures of the split maneuver and the leader/follower leave maneuver	

- **19 discovered vuln (18 new** compared to manual discovery in prior works!) •
 - 4 (all new) from P2PCD (Peer-to-Peer Certificate Distribution) protocol in IEEE 1609
 - **15 (14 new)** from 2 popular platoon protocols (VENTOS, PLEXE)!

ID	Name	Implications
N1	Response Mute	Stop the CV device from sending learning responses
N2, N3	Request Mute	Stop the CV device from sending learning requests
N4	Numb	Stop the CV device from recording unknown certificates
A1, A2	(Prerequisites)	Cause traffic collision ^[1] , lead to A3-15
A3, A4	Split Trigger	Interfere the traffic flow stability, decrease efficiency and safety
A5-14	PMP Block	Prevent platoon members from performing any maneuvers
A15	Inconsistency	Lead to failures of the split maneuver and the leader/follower leave maneuver
: CV network protocol, P2PCD A: CV application, PMP 44		

- **19 discovered vuln (18 new** compared to manual discovery in prior works!)
 - 4 (all new) from P2PCD (
 15 (14 new) from 2 population

		• Use Short hash size for certificate matching	
ID	Name	 E.g., <i>3 bytes</i> in P2PCD for performance purposes → o 	
N1	Response Mute	 Store certificate generation to find a collision due to the bir Allow unicast message when the design assum 	
N2, N3	Request Mute	Sto messages (e.g., message volume throttling)	
N4	Numb	• Lack of handling for non-responding receiver	
A1, A2	(Prerequisites)	- Lack of consistency-checking for global states (a platoon member lies about its position)	
A3, A4	Split Trigger	Interfere the trainc now stability, decrease enciency and sale	
A5-14	PMP Block	Prevent platoon members from performing any maneuvers	
A15	Inconsistency	Lead to failures of the split maneuver and the leader/follower l	

Representative causes:

- Use short hash size for certificate matching
 - E.g., *3 bytes* in P2PCD for performance purposes \rightarrow only *10k* offline certificate generation to find a collision due to the birthday paradox!
- llow **unicast** message when the design **assumes broadcast** lessages (e.g., message volume throttling)
- ack of handling for **non-responding receiver**
- ack of consistency-checking for **global states** (e.g., whether platoon member lies about its position)

lures of the split maneuver and the leader/follower leave maneuver

Result validation & reporting

- Successfully validate all attacks in a **real-world testbed**
 - OBU: Ubuntu 16.04 + closed source IEEE 1609.x
- Interestingly, some protocol implementation details makes the attack easier:
 - N1 and N2: indefinitely block communication
 - N1: only require 3 malicious packets rather than 4
 - N2: only require 3-byte hash collision instead of 8-byte collision
- Vulnerability report
 - Reported to & received vuln acknowledgements for all 4 newly-discovered P2PCD vulns from IEEE 1609 Working Group
 - Now discussion mitigation solutions, **planned to be integrated into the next version of IEEE 1609.2**

Victim CV devices

Today: Cyber-attack surface to AD & V2X-based transp. AI

Today: Cyber-attack surface to AD & V2X-based transp. Al

Today: C

First to study security of infrastructure-side CV systems [NDSS'18]

- <u>Target</u>: USDOT Intelligent Traffic Signal (I-SIG) system
- <u>Attack vector</u>: CV data spoofing
- <u>Impact</u>: One single attack vehicle can create massive traffic jams!
 - Root cause: New security vuln at *traffic control algorithm* level
 - Demo: <u>https://sites.google.com/view/cav-sec/congestion-attack</u>

Defenses:

- [TRB'19] Trajectory-based attack detection at *transportation infrastructure* side
- [AutoSec'20 Best Paper Award] Hardware-based spoofing prevention at vehicle side

V2I (vehicle-to-infrastructure)

A

ving

platoon)

Intelligent traffic light

So far, cyber-attack surface to AD & V2X-based transp. AI

[Wan et al., NDSS'22]

Conclusion

- **My group:** Actively researching **AI stack security** in AD & intelligent transportation, under both *cyber-* & *physical-layer attack vectors*
 - Collection of our efforts: <u>https://sites.google.com/view/cav-sec</u>
- Only the beginning of this research problem space
 - For example, now mostly on attack side, need more on *defense* side
 - To facilitate community building & broader impacts:
 - Co-found ACM/ISOC AutoSec (Automotive & Autonomous Vehicle Security) Workshop (2019 -), co-located w/ NDSS'21 & '22
 - Co-created *DEF CON's first AutoDriving-themed hacking competition* in 2021 (one of world's most famous hacker convention)
 - Served on NIST focused group & panel on AD AI test standards & metrics

National Institute of Standards and Technology

Sponsors:

Qualcom

Conclusion

- **My group:** Actively researching **AI stack security** in AD & intelligent transportation, under both *cyber-* & *physical-layer attack vectors*
 - Collection of our efforts: <u>https://sites.google.com/view/cav-sec</u>
- Only the beginning of this research problem space
 - For example, now mostly on attack side, need more on *defense* side
 - To facilitate community building & broader impacts:
 - Co-found ACM/ISOC AutoSec (Automotive & Autonomous Vehicle Security) Workshop (2019 -), co-located w/ NDSS'21 & '22
 - Co-created DEF CON's first AutoDriving-themed hacking competition in 2021 (one of world's most famous hacker convention)
 - Served on NIST focused group & panel on AD AI test standards & metrics
 - Happy to chat more & form collaborations!

Qualcom