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Autonomous Systems in the Wild!

m AVs advertised as transformative JCELNSA Catastrophic accidents

Uber accident: Multiple failure points: (a) object flickering, (b)
distracted safety operator, (c) disabled emergency braking

Slide #4



Autonomous Systems in the Wild!

'tf&
128 258 REM SR 5 2 bz
SWHEARE S EERE
Al-operated service robot fell on the elevator and Al-operated service cart spins out-of-control
knocks two people nearly destroying an aircraft
Source: https://www.youtube.com/watch?v=4Pwx3U4vJKw Source: https://www.thrillist.com/news/nation/chicago-ohare-airport-

cart-out-of-control
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Challenges that Threaten Safety

Source: nvidia.com

SAMPLE OF DISENGAGEMENT REPORTS FROM THE CA V TA T
Manufacturer Raw Disengagement Report (Log) Category Tags
Nissan 1/4/16 — 1:25 PM — Software module froze. As a result driver safely disengaged and resumed  System Software
manual control. — City and highway — Sunny/Dry
Nissan 5/25/16 — 11:20 AM — Leaf #1 (Alfa) — The AV didn’t see the lead vehicle, driver safely = ML/Design = Recognition System
disengaged and resumed manual control.
Waymo May-16 — Highway — Safe Operation — Disengage for a recklessly behaving road user ML/Design  Environment
Volkswagen 11/12/14 — 18:24:03 — Takeover-Request — watchdog error System Computer System
We use the “—” to denote field separators.

Note that log formats vary across manufacturers and time.
Bold-face text represents phrases analyzed by the NLP engine to categorize log lines.

RS Y Y
' o TG P 7

adiction

 AVs 15-4000x worse than humans
S Failures equally attributed to hardware/software,
environment and ML for Waymo

DSN 2018

model
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Are AVs more exposed than non-AVs?

Connect to the internet with loT
devices and phones

Accessible in the open

Vehicles in general are most exposed safety-critical system in the world!




I Are AVs more exposed than non-AVs?

= Resounding Yes!
" |ncreased attack surface
= AV ecosystem is more decentralized

" More software components that are hard to verify

— Trojans, ML uncertainty, training data quality, unknown unknowns, etc.



AV Research Overview for Vulnerability Assessment
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ArXiv

Science Daily, Daily lllini , Guancha.cn, Space Daily, Sina,...

Self-driving thunder! U.S. experts found 561 faults in
Baidu Apollo Nvidia DriveAV in 4 hours

Share to:

2019-11-01 17:41:19 Font size: A- Source: Xin Zhiyuan
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https://www.sciencedaily.com/releases/2019/10/191025170813.htm
https://dailyillini.com/news/2019/11/07/researchers-look-to-increase-safety-in-self-driving-cars/
https://www.guancha.cn/industry-science/2019_11_01_523593.shtml
http://www.spacedaily.com/reports/Researchers_develop_platform_for_scalable_testing_of_autonomous_vehicle_safety_999.html
http://finance.sina.com.cn/stock/relnews/us/2019-11-01/doc-iicezuev6468108.shtml
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ML-Based Fault Injection for Autonomous Vehicles: A
Case for Bayesian Fault Injection, DSN 2019



Identify vulnerabilities that lead to collision ?

Driving Scenario

t \'r+1 \t+2
Research challenge: Testing via manually injecting faults (Fl) is untenable

State-space explosion problem

< May take years

w C

@ 2 Software evolves at much faster rate

M (©

E % LO—O) VWVOTTO IVIOO¢El >~ % g
af = Localization Percepflon ) g_
cmmm  Sm

2 & Sensors > Hardware

a)

—

Temporal propagation
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Our Solution: Bayesian Fault Injection (BFl)

Goals: To accelerate testing to identify faults (in hardware or software) that can lead to
safety hazards

Key Ideas:
d Explicitly model fault propagation in software using Probabilistic Graph Models (PGMs)

 Explicitly model fault propagation in environment using kinematics and safety model
[ Train with observational data from field tests (or simulations)

(d Model fault injection as an inference query on the PGM model

Accelerated testing by: Results:

L Replacing FI with ML inference (conduct Fl only when v" Demonstrated on Baidu Apollo AV agent
ML inference predicts safety violation)

v Test accelerated by 3690x (4 hours vs 2
O Pruning the state space years for traditional fault injection)
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Approach Overview

S1: Construct and train probabilistic graph model

Perception Emergency Braking

aaN

X

Y _—

Q

|

VA

Actuation

Golden
simulation runs

Fault injected
simulation runs

Dataset

S2: Predict outcome of fault injection using PGM inference

O: Observations  f € possible

at time k perturbations

I I

v

PGM inference
predicts corrupted
actuation values

Safety Model

¥

Software propagation

Kinematics
model

Driving/trajectory propagation

Collision
checker

P(U,X,Y,Z,Q) =
P(Z|Q,Y) xP(Y|U X)x P(X|U)x P(U)x P(Q)

Learn Conditional Probability Table

$3: Validate using real fault
injection in simulation

yes
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Construct Probabilistic Graph Model e Emerseny

{0,1} Braking: {0,1}
Step 1: Extract DFG and construct causal model Perception Ergeriency
raking

Static analysis

ADS Software
Code |nstrumentat|on @ @ @ ° e

Leverage lineage and dependency information Controller
Kalman Actuation
Filter
0 k-1 Front acc: Ego acc:  brake:{0y1}
| |  {-1,0,1} {-1,0,1} Lt

Step 2: Learn the parameters of the observational distribution
P(Zy|Qk, Yi» Ze—1) X P(Yie|Uy, Xy )X P(Xy|Up, Xj—1) X P(Uy |Up—1) X P(Qx) X P(Uy_1)XP(Qk-1)

Reduces state-space: Example, Z, depends only on Z;._4, Y, and Qy,
Conditioning on Z;,_; and Y}, blocks the effect of other variables
If Y}, has no effect on Z,,=> X;, and U;, have no effect on Z,,
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Training: Learning Conditional Distribution

Emergency
Braking

Perception

Fill in node
values from

Gaussian
distribution:
Mean,

variance )
variables)

Determine CPD
values that will
minimize
difference
between
predicted and
actual car
measurements

o Conditional Probability Distribution:
Multinomial: Parent to child matrix with

Normalized probabilities
histogram (discretized estimation for continuous
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I Inference: Fault injection as a conditional query

Inject
faults (F1) Q dCalculate conditional
P(ZIX = ¥
\ / \ \ = Z P(Z1Q,Y) x P(Y|U,X =" x")x P(X|U)x P(U)x P(Q)|
Uuy,Q

No real fault injection is begin conducted on software or hardware!
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I Inference: Fault injection as a conditional query

/,”—-N\\\
Inject /’ N
faults (FI) ¢ dCalculate conditional
P(Z|X = x")
\ \ - Z P(Z1Q,Y) x P(Y|U,X =" x)x P(X|U)X P(U)X P(Q)|
Uuy.,Q

» Conditioning on X influences the distribution of U, which influences the distribution of Y
» In realty, Fl does not influence U and only influences Y (as information does not flow
backwards in function invocations)

Research challenge: adjust for confounding variables
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I Inference: Fault injection as an interventional query

% >
Inject 0 Estimating intervention queries using

faults (Fl) y observational data & causal analysis

\ ;Q/ \ \ dLeverage do-calculus [pearl 95)

U Backdoor & front door criteria

P(X|U)

> Joint: P(U,Y,Z,Q)|do(X =" x) = P(Z|Q,Y)xP(Y|U,X =" x)x1xp(U)xP(Q)

> P(Z|ldo(X =" x")) = Xyyoepr(Z1Q,Y) X p(Y|U,X =" x")X 1x p(U)X p(Q)
» Leveraged Rule 2 of do-calculus (backdoor-criteria)
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I Modeling Propagation to Driving Behavior
(forward simulation)

A /
PIDl_ l 1 Y
¢: steer e \' ",5: - ',é: - iteelring
b , V() ngle
b: brake : Sb” So° So" &

¢:throttle Kinematics model

UVt = f(Ct, by, ¢t)
dz¢/dt = v; cos O X

Rigid body motion model

dy:/dt = vy sin 0,

det/dt — (v¢ tan qst)/L’ Forward simulation can be also modeled
using NNs [DSN 2020]
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Accounting for temporal compensation (Safety Model)

«© : dsaf;B,Ir)éin
= EV .<d >, e .
S| EY . dstop : | Emergency stop maneuver (assume max deceleration)
cl o safe. —— d d
9 - - S v ﬂ‘ =Oandﬁ‘ = Q.

. ' : dt t:tstop dt t=tstop
‘_E dvy doy
@ — = —a and — = 0.
= dt e dt
—

|

dstop — P(amaXa o, 0o, Po, Zo, yO)

d..r: Safe ego car distance from other objects
dstop: Minimum distance ego car needs to stop Other collision models: NVIDIA safety force field, Intel RSS

6= dsafe - dstop
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Summary: Inference and Validation

S2: Predict outcome of fault injection using PGM inference

O, Software do(f); f €

$3: Validate using real fault
injection in simulation

yes

state attime k  possible faults Safety Model
I |
: !
PGM inference " " Collisi
predicts corrupted > Inématics — otlision
i model checker
actuation values

Software propagation Driving/trajectory propagation




Injection Targets: Fault Models Encapsulates What and
Where

Measured velocity (min, max)

Tracked object velocity (max)
Tracked object velocity (min)

Tracked object acceleration
(min)

Tracked object acceleration
(max)

Measured acceleration (min)
Measured acceleration (max)
PID input (half)

PID input (double)

Throttle (min)

Throttle (max)

Steer (min)
Steer (max)
Brake (min)
Brake (max)

Obstacle classification
(disappear)

Obstacle classification
(vehicle)

Obstacle classification
(pedestrian)

Obstacle classification (cyclist)

Obstacle distance (min)
Obstacle distance (max)

Camera object classification

(disappear)

Camera object classification
(vehicle)

Camera object classification
(pedestrian)

Camera Obstacle distance
(min)

Camera Obstacle distance
(max)

Camera object classification
(cyclist)

LiDAR classification
(disappear)

LiDAR classification (vehicle)

LiDAR classification

41 fault types in total

(pedestrian)

LiDAR classification (cyclist)

LiDAR Obstacle distance (min)

LiDAR Obstacle distance (max)

Lane disappear

Lane type (dashed)
Lane type (solid)
Lane width (double)
Lane width (half)
Camera frame (noise)

LiDAR frame (noise)
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Results

 Modeling data/control flow as probabilistic graphs '“te“’e““m‘/ \

J Model faults as interventions \

X

1 Leverage forward simulation techniques for checking safety

Results:

v" Demonstrated on Baidu Apollo AV agent

v Able to find 561 faults that lead to collisions
(found 0 via random sampling); >3690x speed up over enumeration

v" Replicated 460 (82%) faults in “software-in-the-loop” simulation
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ML-driven Malware that Targets AV Safety, DSN 2020



Curious Case of Stop Signs

* Most attacks focus on altering detection outputs
* Misclassification or misdetection of objects
* Boloor et al., Eykholt et al., and Lu et al.

Stop signs can be fooled

Spatial resilience
Temporal resilience through tracking through sensor fusion

* Low chance of causing safety hazards
e Kalman filter or other state-space model
* Redundancy from multiple sensors
(sensor fusion)
 Redundancy in time
(continuous tracking)
* Timing of attack




Our Attack: Situationally Aware ML-driven Malware

AV is fooled to belifve

that the object is /

moving out of lane.
Before Attack After Attack

Malware characteristics

* End-to-end attack --- perturbs Kalman Filter to overcome HRereselt
both temporal and spatial resilience TO

 Masquerade attacks as failures

* Leads to safety hazards --- collisions and emergency braking

Demonstration using Apollo autonomous driving agent
and LGSVL world simulator



log(Count)

Key Insight

» State-of-the-art object detectors (Yolo and FCNN) are highly noise
* 99t %ijle continuous misdetection rate for pedestrian is 31 and vehicles is 59.4 frames

* Position estimates (i.e, bounding box) can be miscalculated by up to 10 m

* Perception systems rely on Kalman filters and sensor fusion models to compensate for

errors/noise

j 103 o
3 E .
107 5 > 1 Bounding box errors
102 ] % 102 E
3 S ] > : > 2.0 _
. S 10! - i — Normal Fit s — Normal Fit
10! 4 Is! 3 T 0.4 - Data S i Data
3 : 2 8 1.5
- O N
10° by T 10 & T E 4? 1.0 4
0 50 0 100 = 0.2 1 =
Continuous Pedestriar Continuous Vehicle 3 T 0.5-
misdetections (frames misdetections (frames) o o
. . a- 0.0 T (a8 0.0 I I :
Misdetections ~-10 0 10 ~25 0.0 25
Normalized bbox center Normalized bbox center

delta x (Pedestrian) delta x (Vehicle)



Launching Attacks is Not Easy!

Gain access to the system

Persist on the system without getting notice
Monitor the state of the system to launch the attack
Execute the attack such that safety hazard occurs

Hold the attack for sufficiently small duration to evade detection and
mitigation



Situationally Aware ML-driven Malware

Attack Goal

’ Before Attack
a) Move-out

TO
. EV

b) Move-in

c) Disappear

After Attack

|
ﬁ
7
| |
N 7
| |
l l

Methodology

What to attack ?

Perception module to alter perceived object
trajectories

How to attack ?

Perturbs either camera pixels or object
detection outputs

When to attack ?

Safety potential is low, and time needed to
cause safety hazard is minimal.



Step 1: Scenario Matching (What to attack ?)

e Before Attack
a) Move-out

o

B

c) Disappear
n

After Attack

1l

d
A

G

Infer the closest-in-path-object or target object (CIPO or TO)’s position

and trajectory

Choose the attack vector based on the table as follows

Provides Situational Awareness

Target object
trajectory

Target object location

AV lane

Non-AV lane

Moving in

Move_ Out/Disappear

Lane Keeping

Move Out/Disappear

Move_In

Moving out

Move_In




Step 2: Safety Hijacking (When to attack ?)

 Safety hijacking uses a 3-layer-fully-connected neural

BV __ W . network to decide the attack launch time
:l § g ’_ * Learns: ADS’s behavior and change in safety potential &
>

A

5 wsafcf
i~ : L * Input: Target object (TO) kinematics (v, a) , safety state (&)
and attack duration (k)

input = (8t0,¢ V1o, t» Aro0, ¢, K)
e Output: predicted safety potential after the attack
output = FCNN (input) = STO, t+k

010,t Vro, v Aro, t@

* Optimal attack duration (k™) search:

Repeat inference to find k *

* Given input, FCNN model, and targeted safety distance
65, find the optimal k*

k* = min {k 370, e+ < 81}




Step 3: Trajectory Hijacking (How to attack ?)

* Perturbs camera feed around target object (TO) with adversarial
patches for k™ time steps to impact sensor fusion outputs

* Modifies perceived object trajectories and impacts decision making Attacking Kalman Filters (refer to the paper for
details)
* Disguise such perturbation as noise n}ffx M (0} + &, 8i1)
e Small shift for Move_In and Move_Out to avoid tracker evasion (within sit. M < ),
detector noise characteristics) IoU(oi + &g, patch) > v,
Wy € [,LL—O',/.L+O']

* Trajectory hijacking can be skipped if attacker has access to
onboard software

4. TH changed

object trajectory
to move-out.

1. SM chooses
move-out attack
vector as the
target object is
in-path in lane
keep mode.

S 3. TH perturbed perturbed
B the pixels within the bbox
& | for k time-steps
| (Perturbed pixel shown in
| white).

f”

2. SH identifies

the current state [ % | : &
and time optimal  (a) simulation (b) ADS  (c) simulation view (d) ADS view (e) Simulation (f) ADS view

for attack. view view (Perturbed pixels) (Hijacked trajectory) view (collision)  (collision)




RoboTack Malware

Scenarios

RoboTack: Putting it all together

(1] (3 o (2] 3
P D[_ | . aeas Attacks Scenarios Scenario Matching
b : atcher 1 : 1 : Lajﬂry_H“Lker H
g v R Q i} e Evaluation platform
‘ __> o : : -é ? - | Object)
—~Q : —Q— L E : ; - s * Apollo 5.0 (Al agent)
4 f e T S EV (Bgo :
P & 5" &I_’O 2,8,03 = o o Vehicld e LGSVL 2019.2 (world-simulator)
O¢ S : f c ) .
Noisy Estimated & Other & G
measurement State =1 sensors 3 t
=
Simplified view of the perception system (o) ‘ g . .
Experiment details
P ) [ Localization | < ‘ { ~ . . .
k : g i e ~260 hours of simulation on 3 machines
= Q-I — T . .
- 5| |5 < Uads 3 e ~1400 evaluation experiments
ﬁ — — [«] PR (m) a g
B B|=» 2 ElaA, — .. .
HIRER - 1o CTouK e 5driving scenarios
B ¢ E] OB
@
Trajectory |@ 8, D
Hijacker || Safety =
Hijacker Si n a
t=T0 t=TO+K
Pedestrian | | | B walking | [NPC_ NPC_ NPC_ |
crossing then stopping D4«

L

DS-2

@dry ) EV

ayr—»

. .

J

an—> |

DS-4

EV
ay—>
D

S-5



Evaluation and Results

Scenario ID k* % Emergency Braking % Crashes

(# frames)
RoboTack Scenario matching + | Baseline | RoboTack | Scenario matching + Baseline
Trajectory hijacking Trajectory hijacking

Vehicle - 65 37.3 7.3 17.3 2.8

Move_ Out
2.3% 0%

Pedestrian 32 97.8 6.6 84.1 3.5
-Move_Out

Baseline attack (random object, random duration, random time)

Note: complete evaluation on RoboTack performance of all the scenarios is in the paper

» Highly efficient in targeting AV safety compared to state-of-the-art methods; across all experiments
» caused forced emergency braking in 75.2% cases (33x more), and
« caused accident in 52.6% of cases compared to zero accidents

 Highlights the need for assuring safety of Al systems
« Temporal and spatial resilience is not sufficient
« Safety oriented co-design of Al and systems



/Ql: What vulnerabilities exist in Autonomous Vehicles?

Q2: Are these vulnerabilities worse than existing
vulnerabilities in non-Avs?

Q3: Can these vulnerabilities be used for attacks?

Ql: How do assess the threat at runtime for safety?

/

L

— —
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Watch Out for the Safety Threatening Actors: How do we
make AVs safer?

* Driving is invariably a risky task

e Availability of backup plans (multiple choices)
key to dealing with threat posed by actors /
what if analysis

* Predicting safety threatening actors is the key
to safety assessment and mitigation
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Watch Out for the Safety Threatening Actors: How do we

make AVs safer?

@ Al vehicle

Other actors

Only choice is to steer right

Slide #41



Humans continuously assess the importance of each actor and
the risk posed by them while driving!

Question: How do we bring a similar actionable intelligence to
autonomous driving?
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I Our Solution: Threat-aware Safety Blanket

§ ¥/
.o X4 ‘ "» S
N 3 4 ¢ ‘A
B = o — Localization [ Perception f========== » Planning Driving commands
& = ‘..'h ““'
' “ ..... ““‘
e ¢ . ‘AL
¢ World Model AV software stack > 2 S
< s )
Q E % = o
sTESs
&Y % 4 29 &5 E
S i P Monitor top K a °  ©
& & =
2] S 8§ & actors
Threat -_— O - & l ==P |nterventions
analysis
¢ = Mitigate
4 & %§ threat/Increase threat
Safety blanket @ # S
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How Do We Assess Threat?

Possible trajectories: Possible trajectories: Possible trajectories:
* Follow vehicle * Follow vehicle * Follow vehicle

« Move to left lane +Meve toleftlane +—Meove-tolefitane
* Brake * Brake +Brake

Attention required to drive increases from left to right
Intuition: available trajectories/drivable area decreases

#diverse trajectories also depends on the map

Slide #44



I How Do We Assess Threat?

Attention required increases with the increase in
uncertainty of another actor’s behavior
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Actor’s Influence on Decision Making

Current state Predicted/given future states
T T+1
Internal
representation —

T T+1
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Actor’s Influence on Decision Making

" Quantifying decrease in diverse trajectories due to an actor
— —

Original driving scenario and @
trajectories

T T+1

. . . (total #trajectories after deleting the actor(s)) — (total #trajectories before deleting the actor)
Reduction in diverse trajectories = : _ .
total #trajectories after deleting all actors

Deleting all actors adds @ -

three extra trajectories
e

LS

Deleting bottom actor adds More risky @
one extra trajectory

T+1

X" |X

Deleting top actor adds two .
extra trajectories Less risky @

T+1 Slide #47
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Formalizing Threat Posed by an Actor

X t(}c) : Trajectory of

/I " actor 1

EU .

Defining driving scenario: S =< ML X; p.z," >

A 4
\ 4

A4

xg?: Current location

of Al actor

Possible driving trajectories fromt to t + k:

_ €V —
Zok = f(M, Xy, 2§
- Planner that finds all reachable cells @ E

"~ (we use RRT*)

T

Possible driving trajectories when no actors are present :

X
X

Z7) = fp(M, ¢, ") >

LaValle, Steven M. "Rapidly-exploring random trees: A new tool for path planning." (1998): 98-11.
Karaman, Sertac, et al. "Anytime motion planning using the RRT*." ICRA 2011.

X t(? Trajectory of actor 2

T+1

T+1

—

—
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Formalizing Threat Posed by an Actor

Quantifying total reduction in driving trajectories:

Quantifying reduction in driving trajectories due to an actor:

Zt’k — fp(Ma Xt,k’.ﬂ '(I;f‘,zv)

Z{,Zk — Ly
Ptk = &
Li

S|

T

o

—
X

T

o

%
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Accounting for Uncertainty

Joint distribution modeling the uncertainty in the estimates

§ N actors

o (7) o =(2) —(z) | (1) (V)
Xt,t—{—k = p(x,; ’, ...,.1_,t+/,€|(‘)1 ,...,(),i )

1 Output of DNN-based object detection model

Sample trajectories from the joint distribution and calculate possible set of future
driving trajectories for the Ego actor

Risk with no uncertainty in future trajectories:

Z/’i .7 Probability distribution of drivable future
i Ttk t,k (ﬁ trajectories before and after deletion of actor i
Ptk = 79
t,k : 7/
Risk under uncertainty /)Z — Ptk — PZt ke
in future trajectories: L,k |

» KL divergence or sampling or means Slide #50



I Formalizing Threat Posed by an Actor

Counterfactual Queries

.y - €y
DO

(d

Figure 2: The factor graph representation of the counterfactual query. X t(:zt) ., Tepresents the trajec-
tories of actor ¢ from time ¢ to time t + k, Z;.; 1 1s the set of ego actor’s safe future trajectories,
and Env represents the static environment. Circle are nodes representing an actor’s distribution and
squares are factor functions. Factor Graph (a) All actor presence, (b) One actor removed, (c) All
actors removed, and (d) Actor-actor influence included.




I Proactive Threat Mitigation

Sensor

Data

Ego actor

Ego
@ actions

SMC
actions

Environment @ l

A

-
>

@ Final SMC

actions

ks

Ena
SMC
action

Design of Safety Hazard Mitigation

Controller (SMC)

Formulated as Partially Observable Markov Decision
Process (PoOIMIDP)

Ego actor's policy ¢ ~ &, where @ is the policy distribution.

u be the overall autonomous system, and M be the SMC

a; be the action taken at time t
S; be the observed system state
SMC policy Y ~ W, where ¥ is the mitigation policy distribution

at = U(St; b, ¢) = factagg(A(St; ¢)a M(St; 7»0)) = factagg(a':mc7 a:gO)

rt = aO(l - STI) + d1Tpc + a2Pam + a3Tcomfort + ...+ AnTnth_factor

Slide #52



I Training SMC using Reinforcement Learning

Sensor Ego
X Data ~ Egoactor ¢ @ eRone
STI + Reward
—
Eval. e - SMC
Environment [— v ((\ !/.j'} actions
7 —» St At S¢iq It &
@ - T 1 4 Enable
ina j SMC SMC
actions E D-DQN action
Replay Buffer




Proactive Threat Mitigation

Mitigation policy | # acc./# T.runs

LBC 565/1000 (0.565)
RIP (WCM) 478/1000 (0.478)
LBC+SMC (ours) | 128/1000 (0.128)

Table 2: Comparison of mitigation policies (i) LBC agent [7], (ii) RIP agent with the worst case
model (WCM) [9], and (iii) LBC agent with SMC (ours); # acc.: number of of runs with accident,
#T.runs: total number of runs.
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I Curating Evaluation Dataset: Characterizing Threat in Existing Datasets

e Evaluated on Argoverse dataset

(1000 driving hrs)
%
2 % 2 4 50th, 75th, 90th, and 99th
& ¢ " D A percentiles of the actor STl
S 0§ & values are 0.0, 0.0, 0.0, and
P 0.4, respectively
= &
& =
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e
Intensity of red indicates the Extracted driving scenario from nuScenes
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Accelerated Assessment

S L/ S 2,
song, ! o oS Wi, ;
~ 3 4 ¢ 8 § @
' = e e ©
=]
e ? L 3 ¢ @ S BFI: Smart Fault What faults to inject
¢ y S | 3
Injection (DSN 2019) into the AV system?
Threat offline
analysis ' RoboTack: Smart What, when, and how to
Malware (DSN 2020) activate an attack vector?
Driving Scenario(s) Target scenes

and actors online

24x speedup for BFI
40% more accurate in the case of RoboTack
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Conclusion
" AVs have significantly higher #vulnerabilities than Non-AVs

* Vulnerabilities can be used for attack (perhaps not as trivial to launch as
we think) --- multiple weaknesses needs to be leverage for complete
automation

= Assessment of safety hazards can prevent many of these attacks in
deployment

= Attacker and mitigator learn from each other which is an ever-evolving
game (need for game-theoretic models)



