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Background

Types of Cybersecurity Attacks

Inserting malicious code into the 
computer’s program memory and 

tricking the processor into executing it.
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Background

Likely Malware Insertion Points in Future for Vehicles

Charging connection w/ 
wireless telemetry

Vehicle Wireless 
Com Interfaces
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Background

The Malware Cybersecurity Challenge

• The nation’s cyber infrastructure consists of a massive number of identical 
computer systems.

• This homogeneity is advantageous because a single piece of software 
can be deployed across millions of systems to increase capacity.

However, this gives an 
attacker a significant 

advantage in terms of effort 
relative to system defenders 

by re-using their attack across 
numerous systems. 
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Background

The Attacker’s Advantages Becomes Greater as we Move to 
Embedded Computing.

Personal Computers
400M sold in 2018.

Smart Phones
1.5B sold in 2018.

Embedded Computers
25B sold in 2018.
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Our Approach

If Homogeneity gives the attacker an advantage, let’s diversify 
the network.

Take Away the Attacker’s Advantage 
by Randomizing the Hardware
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Our Approach

But How Do You Diversify Hardware???

There has been some prior work in the area 
of randomization of instructions sets in 
Virtual Machines, with promising results.

Hardware is fixed and takes 
months/years to fabricate.
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Our Approach

Our Project Focuses on Diversifying Embedded Computers, 
not IT Infrastructure (i.e., Servers)

Characteristics of an Embedded Computer
• Smaller (sometimes 8-pin packages)
• Lower Clock Frequencies (1MHz - 16MHz)
• Smaller memories (256k to 1M)
• Dedicated software, not general-purpose
• Often no OS other than real-time scheduler.
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Our Approach

We Exploit the Ability to Implement a Complete Embedded 
Computer on a Field Programmable Gate Array (FPGA) 

Why is this important?
• FPGA hardware is designed using a Hardware Description Language (i.e., text).
• Once we have a design in an HDL, we can use scripts to create versions of it with alterations.
• The HDL can be created at compile-time.

Synthesis / 
Implementation

HDL 
Generation 

Scripts
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Once we control the HDL generation, we can make modifications 
to the design & and even replicate it.
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Our Approach

Once we control the HDL generation, we can make modifications 
to the design & and even replicate it.

Synthesis / 
Implementation

HDL 
Generation 

Scripts

This results in “functionally 
equivalent, heterogeneous 

cores” on the FPGA that run as 
a redundant system.

Baseline Computer
• Original Processor
• Open-Source Doc
• Known Opcodes
• Compiler Supported

We can create copies of the baseline 
computer with different instruction 

opcodes before synthesis.
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Our Approach

Once we control the HDL generation, we can make modifications 
to the design & and even replicate it.

Synthesis / 
Implementation

HDL 
Generation 

Scripts

But since the attacker compiled 
the malware for the publicly-

available Baseline computer’s  
opcodes, it is the only one that 

executes the malware.

A Malware attack will insert 
execution binaries into each of 
the 3x cores’ program memory 

on the FPGA.X
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Our Approach

Once we control the HDL generation, we can make modifications 
to the design & and even replicate it.

Synthesis / 
Implementation

HDL 
Generation 

Scripts

The processors 
with randomized 
opcodes don’t 
recognize the 

malware.

We can either 
throw an 

exception or run a 
pre-defined 

routine to remove 
the malware.

The computers 
with randomized 
opcodes don’t 
recognize the 

malware.

We can either 
throw an 

exception or run 
a pre-defined 

routine to remove 
the malware.

A Malware attack will insert 
execution binaries into each of 
the 3x cores’ program memory 

on the FPGA.

But since the attacker compiled 
the malware for the publicly-

available Baseline computer’s  
opcodes, it is the only one that 

executes the malware.

X
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Our Approach

But how do we map the original source code opcode assignments 
used by the compiler into the two heterogenous cores?
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Our Approach

But how do we map the original source code opcode assignments 
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Computer
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Processor 2

Program 
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We define the VHDL 
file hierarchy 

describing the 3x 
computers to have 

separate instances for 
Program Memory and 
Opcode Definitions.
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VHDL Files

Our Approach

But how do we map the original source code opcode assignments 
used by the compiler into the two heterogenous cores?

FPGA
Core 1

Core 2

Core 3

Attack
Detect 
Voter

Synthesis 
& 

Implementation

Malware Resistant 
Computer

FPGA 
Design Tools

Processor 1

Program 
Memory 1

Attack 
Detect 
Voter

HDL Description of 
3x Computers & 

Attack Detect Voter

Opcode Def 1

Processor 2

Program 
Memory 2

Opcode Def 2

Processor 3

Program 
Memory 3

Opcode Def 3 Their format is 
defined, but the 

files don’t yet exist.

We define the VHDL 
file hierarchy 

describing the 3x 
computers to have 

separate instances for 
Program Memory and 
Opcode Definitions.
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VHDL Files

Our Approach

But how do we map the original source code opcode assignments 
used by the compiler into the two heterogenous cores?

FPGA
Core 1

Core 2

Core 3

Attack
Detect 
Voter

Synthesis 
& 

Implementation

Malware Resistant 
Computer

FPGA 
Design Tools

Processor 1

Program 
Memory 1

Attack 
Detect 
Voter

HDL Description of 
3x Computers & 

Attack Detect Voter

Source Code
(main.c)

Compiler
Processor 
Definition

(header file)

Opcode Def 1

Processor 2

Program 
Memory 2

Opcode Def 2

Processor 3

Program 
Memory 3

Opcode Def 3

We want to start the 
software development 

using a standard tool flow.

(i.e., main.c, standard 
development environments)
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VHDL Files

Our Approach

But how do we map the original source code opcode assignments 
used by the compiler into the two heterogenous cores?

FPGA
Core 1

Core 2

Core 3

Attack
Detect 
Voter

Synthesis 
& 

Implementation

Malware Resistant 
Computer

FPGA 
Design Tools

Processor 1

Program 
Memory 1

Attack 
Detect 
Voter

HDL Description of 
3x Computers & 

Attack Detect Voter

Source Code
(main.c)

Compiler
Processor 
Definition

(header file)

Machine Code
(object file) Opcode Def 1

Disassembly Processor 2

Program 
Memory 2

Opcode Def 2

Processor 3

Program 
Memory 3

Opcode Def 3

The output of the 
compiler is the 

machine code using 
the Baseline Computer
Opcode assignments.

Baseline 
Computer
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VHDL Files

Our Approach

But how do we map the original source code opcode assignments 
used by the compiler into the two heterogenous cores?

FPGA
Core 1

Core 2

Core 3

Attack
Detect 
Voter

Synthesis 
& 

Implementation

Malware Resistant 
Computer

FPGA 
Design Tools

Processor 1

Program 
Memory 1

Attack 
Detect 
Voter

HDL Description of 
3x Computers & 

Attack Detect Voter

Source Code
(main.c)

Compiler
Processor 
Definition

(header file)

Machine Code
(object file) Opcode Def 1

Disassembly Processor 2

Program 
Memory 2

Opcode Def 2

Processor 3

Program 
Memory 3

Opcode Def 3

The disassembly gives us 
details of which fields in 

the machine code are 
Opcodes vs. Operands.

Baseline 
Computer
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Opcode
Translator

VHDL Files

Our Approach

But how do we map the original source code opcode assignments 
used by the compiler into the two heterogenous cores?

FPGA
Core 1

Core 2

Core 3

Attack
Detect 
Voter

Synthesis 
& 

Implementation

Malware Resistant 
Computer

FPGA 
Design Tools

Processor 1

Program 
Memory 1

Attack 
Detect 
Voter

HDL Description of 
3x Computers & 

Attack Detect Voter

Source Code
(main.c)

Compiler
Processor 
Definition

(header file)

Machine Code
(object file) Opcode Def 1

Disassembly Processor 2

Program 
Memory 2

Opcode Def 2

Processor 3

Program 
Memory 3

Opcode Def 3

An Opcode Translator 
can parse the Baseline 

machine code and put it 
into a VHDL form.

Baseline 
Computer
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Opcode
Translator

VHDL Files

Our Approach

But how do we map the original source code opcode assignments 
used by the compiler into the two heterogenous cores?

FPGA
Core 1

Core 2

Core 3

Attack
Detect 
Voter

Synthesis 
& 

Implementation

Malware Resistant 
Computer

FPGA 
Design Tools

Processor 1

Program 
Memory 1

Attack 
Detect 
Voter

HDL Description of 
3x Computers & 

Attack Detect Voter

Source Code
(main.c)

Compiler
Processor 
Definition

(header file)

Machine Code
(object file) Opcode Def 1

Disassembly Processor 2

Program 
Memory 2

Opcode Def 2

Processor 3

Program 
Memory 3

Opcode Def 3

The translator creates two 
VHDL files to describe the 

Program Memory & 
Opcode Definition.

The Opcode Definition is 
provided as a VHDL Package.

Baseline 
Computer
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Opcode
Translator

VHDL Files

Our Approach

But how do we map the original source code opcode assignments 
used by the compiler into the two heterogenous cores?

FPGA
Core 1

Core 2

Core 3

Attack
Detect 
Voter

Synthesis 
& 

Implementation

Malware Resistant 
Computer

FPGA 
Design Tools

Processor 1

Program 
Memory 1

Attack 
Detect 
Voter

HDL Description of 
3x Computers & 

Attack Detect Voter

Source Code
(main.c)

Compiler
Processor 
Definition

(header file)

Machine Code
(object file) Opcode Def 1

Disassembly Processor 2

Program 
Memory 2

Opcode Def 2

Processor 3

Program 
Memory 3

Opcode Def 3
Since the translator has already parsed 

the Opcode fields, it is simple to 
reassign their binary instruction codes.

Opcode 
Randomization 

Scheme
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Opcode
Translator

VHDL Files

Our Approach

But how do we map the original source code opcode assignments 
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The translator produces 
VHDL files for the 

Program Memory & 
Opcode Definition for the 

other two computers.

The translator produces 
VHDL files for the 

Program Memory & 
Opcode Definition for the 

other two computers.
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Opcode
Translator

VHDL Files

Our Approach

But how do we map the original source code opcode assignments 
used by the compiler into the two heterogenous cores?

FPGA
Core 1

Core 2

Core 3

Attack
Detect 
Voter

Synthesis 
& 

Implementation

Malware Resistant 
Computer

FPGA 
Design Tools

Processor 1

Program 
Memory 1

Attack 
Detect 
Voter

HDL Description of 
3x Computers & 

Attack Detect Voter

Source Code
(main.c)

Compiler
Processor 
Definition

(header file)

Machine Code
(object file) Opcode Def 1

Disassembly Processor 2

Program 
Memory 2

Opcode Def 2

Processor 3

Program 
Memory 3

Opcode Def 3

Opcode 
Randomization 

Scheme

The synthesis step creates 3x, functionally-
equivalent, heterogeneous computers running 
the same software, just with different Opcode 

assignments.

Since the different Opcodes alter the control 
unit synthesis, it results in different hardware.

CyberShield
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Standard Eclipse Programming Environment 
Supporting C and Assembly.

Targeting a widely-used Microcontroller, the 
MSP430.  A 16-bit RISC processor. Testbed program (main.c) to 

keep a missile upright
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Custom Python / JAVA Script code.
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We built a fully functional MSP430 in 
VHDL from the TI datasheets. We used Matlab Simulink 

HDL Coder to generate 
the VHDL from a 

graphical/functional 
description.
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The entire control unit is described 
as a graph and then converted into 

VHDL by the HDL coder toolbox.
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We used the intel Quartus 
FPGA design tools.
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We used the DE0-CV 
FPGA board with an intel 

Cyclone V FPGA.
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Demonstration Under Attack

Stepper motor for control

Functionally Equivalent Systems
“MSP430 vs. CyberShield”

Both running closed-loop control code to 
keep missile upright and accepted setpoint 

angles over UART.

Functionally Equivalent Systems
“MSP430 vs. CyberShield”

Both running closed-loop control code to 
keep missile upright and accepted setpoint 

angles over UART.

Angle sensor

UART for angle setpoint
(47° or 61° or 79°,
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Demonstration Under Attack

The computer periodically sends the stepper motor its 
setpoint angle.  The send frequency is dictated by a 

timer that triggers and interrupt.

The computer continuously reads the actual angle of 
the missile from the sensor and compares it to the 

setpoints.  It adjusts motor accordingly.

New setpoints are received asynchronously from a user 
over UART.  A Rx on the UART link triggers an IRQ.

Program Description
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The Malware Still Gets Inserted 

via Buffer Overflow

NOP

But as soon as the starts reading the inserted 
code in the CPU, it detects that all opcodes are 

the same!!!
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Demonstration Under Attack

The Same Attack is Made on CyberShield

CyberShield Halts Operation and 
Initiates a Recovery Procedure.

We can see how CyberShield Responds by 
Measuring the Instruction Registers in the 

CPU with a Logic Analyzer.

After flushing out the malware, CyberShield 
resumes normal operation.

The attack is detected when all three 
CPUs see the same Opcode.

All Opcodes are Different 
by Design

The rapid nature of hardware recovery allows low 
latency and the ability to operate-through-attack.
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Conclusion

• CyberShield is an approach to defeating malware by introducing 
hardware diversity at the hardware level.

• This is enabled by real-time HDL generation at compile-time.

• A buffer insertion attack was used to test CyberShield.

• CyberShield was able to detect the malware, remove it, and continue 
operation while an MCU was not.
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Questions
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