
CyberShield

An Approach to Defeat Malware in Edge Computers
using Hardware Diversity

Dr. Brock J. LaMeres
Professor, ECE

Dr. Clem Izurieta
Professor, CS

Colter Barney
Grad Student, EE

Tristan Running Crane
Grad Student, EE

University Team

Walker Ward
Undergrad Student, CS

The Second IFIP Workshop on Intelligent Vehicle Dependability and Security (IVDS)
June 23-26, 2022 – Old Town Alexandria, VA, USA

Industry Mentor

Dr. Jay Lala
Cyber Tech Area Lead

Senior Principal Engineering Fellow

CyberShield - Defeating Malware Attacks Through HW Diversity

Background

Types of Cybersecurity Attacks

CyberShield - Defeating Malware Attacks Through HW Diversity

Background

Types of Cybersecurity Attacks

Inserting malicious code into the
computer’s program memory and

tricking the processor into executing it.

CyberShield - Defeating Malware Attacks Through HW Diversity

Background

Likely Malware Insertion Points in Future for Vehicles

Charging connection w/
wireless telemetry

Vehicle Wireless
Com Interfaces

CyberShield - Defeating Malware Attacks Through HW Diversity

Background

The Malware Cybersecurity Challenge

• The nation’s cyber infrastructure consists of a massive number of identical
computer systems.

• This homogeneity is advantageous because a single piece of software
can be deployed across millions of systems to increase capacity.

CyberShield - Defeating Malware Attacks Through HW Diversity

Background

The Malware Cybersecurity Challenge

• The nation’s cyber infrastructure consists of a massive number of identical
computer systems.

• This homogeneity is advantageous because a single piece of software
can be deployed across millions of systems to increase capacity.

However, this gives an
attacker a significant

advantage in terms of effort
relative to system defenders

by re-using their attack across
numerous systems.

CyberShield - Defeating Malware Attacks Through HW Diversity

Background

The Attacker’s Advantages Becomes Greater as we Move to
Embedded Computing.

Personal Computers
400M sold in 2018.

CyberShield - Defeating Malware Attacks Through HW Diversity

Background

The Attacker’s Advantages Becomes Greater as we Move to
Embedded Computing.

Personal Computers
400M sold in 2018.

Smart Phones
1.5B sold in 2018.

CyberShield - Defeating Malware Attacks Through HW Diversity

Background

The Attacker’s Advantages Becomes Greater as we Move to
Embedded Computing.

Personal Computers
400M sold in 2018.

Smart Phones
1.5B sold in 2018.

Embedded Computers
25B sold in 2018.

CyberShield - Defeating Malware Attacks Through HW Diversity

Our Approach

If Homogeneity gives the attacker an advantage, let’s diversify
the network.

Take Away the Attacker’s Advantage
by Randomizing the Hardware

CyberShield - Defeating Malware Attacks Through HW Diversity

Our Approach

But How Do You Diversify Hardware???
Hardware is fixed and takes
months/years to fabricate.

CyberShield - Defeating Malware Attacks Through HW Diversity

Our Approach

But How Do You Diversify Hardware???

There has been some prior work in the area
of randomization of instructions sets in
Virtual Machines, with promising results.

Hardware is fixed and takes
months/years to fabricate.

CyberShield - Defeating Malware Attacks Through HW Diversity

Our Approach

Our Project Focuses on Diversifying Embedded Computers,
not IT Infrastructure (i.e., Servers)

Characteristics of an Embedded Computer
• Smaller (sometimes 8-pin packages)
• Lower Clock Frequencies (1MHz - 16MHz)
• Smaller memories (256k to 1M)
• Dedicated software, not general-purpose
• Often no OS other than real-time scheduler.

CyberShield - Defeating Malware Attacks Through HW Diversity

Our Approach

We Exploit the Ability to Implement a Complete Embedded
Computer on a Field Programmable Gate Array (FPGA)

CyberShield - Defeating Malware Attacks Through HW Diversity

Our Approach

We Exploit the Ability to Implement a Complete Embedded
Computer on a Field Programmable Gate Array (FPGA)

Why is this important?
• FPGA hardware is designed using a Hardware Description Language (i.e., text).

Synthesis /
Implementation

CyberShield - Defeating Malware Attacks Through HW Diversity

Our Approach

We Exploit the Ability to Implement a Complete Embedded
Computer on a Field Programmable Gate Array (FPGA)

Why is this important?
• FPGA hardware is designed using a Hardware Description Language (i.e., text).
• Once we have a design in an HDL, we can use scripts to create versions of it with alterations.

Synthesis /
Implementation

HDL
Generation

Scripts

CyberShield - Defeating Malware Attacks Through HW Diversity

Our Approach

We Exploit the Ability to Implement a Complete Embedded
Computer on a Field Programmable Gate Array (FPGA)

Why is this important?
• FPGA hardware is designed using a Hardware Description Language (i.e., text).
• Once we have a design in an HDL, we can use scripts to create versions of it with alterations.
• The HDL can be created at compile-time.

Synthesis /
Implementation

HDL
Generation

Scripts

CyberShield - Defeating Malware Attacks Through HW Diversity

Our Approach

Once we control the HDL generation, we can make modifications
to the design & and even replicate it.

Synthesis /
Implementation

HDL
Generation

Scripts

CyberShield - Defeating Malware Attacks Through HW Diversity

Our Approach

Once we control the HDL generation, we can make modifications
to the design & and even replicate it.

Synthesis /
Implementation

HDL
Generation

Scripts

Baseline Computer
• Original Processor
• Open-Source Doc
• Known Opcodes
• Compiler Supported

CyberShield - Defeating Malware Attacks Through HW Diversity

Our Approach

Once we control the HDL generation, we can make modifications
to the design & and even replicate it.

Synthesis /
Implementation

HDL
Generation

Scripts

We can create copies of the baseline
computer with different instruction

opcodes before synthesis.

Baseline Computer
• Original Processor
• Open-Source Doc
• Known Opcodes
• Compiler Supported

CyberShield - Defeating Malware Attacks Through HW Diversity

Our Approach

Once we control the HDL generation, we can make modifications
to the design & and even replicate it.

Synthesis /
Implementation

HDL
Generation

Scripts

This results in “functionally
equivalent, heterogeneous

cores” on the FPGA that run as
a redundant system.

Baseline Computer
• Original Processor
• Open-Source Doc
• Known Opcodes
• Compiler Supported

We can create copies of the baseline
computer with different instruction

opcodes before synthesis.

CyberShield - Defeating Malware Attacks Through HW Diversity

Our Approach

Once we control the HDL generation, we can make modifications
to the design & and even replicate it.

Synthesis /
Implementation

HDL
Generation

Scripts

A Malware attack will insert
execution binaries into each of
the 3x cores’ program memory

on the FPGA.

CyberShield - Defeating Malware Attacks Through HW Diversity

Our Approach

Once we control the HDL generation, we can make modifications
to the design & and even replicate it.

Synthesis /
Implementation

HDL
Generation

Scripts

But since the attacker compiled
the malware for the publicly-

available Baseline computer’s
opcodes, it is the only one that

executes the malware.

A Malware attack will insert
execution binaries into each of
the 3x cores’ program memory

on the FPGA.X

CyberShield - Defeating Malware Attacks Through HW Diversity

Our Approach

Once we control the HDL generation, we can make modifications
to the design & and even replicate it.

Synthesis /
Implementation

HDL
Generation

Scripts

The processors
with randomized
opcodes don’t
recognize the

malware.

We can either
throw an

exception or run a
pre-defined

routine to remove
the malware.

The computers
with randomized
opcodes don’t
recognize the

malware.

We can either
throw an

exception or run
a pre-defined

routine to remove
the malware.

A Malware attack will insert
execution binaries into each of
the 3x cores’ program memory

on the FPGA.

But since the attacker compiled
the malware for the publicly-

available Baseline computer’s
opcodes, it is the only one that

executes the malware.

X

CyberShield - Defeating Malware Attacks Through HW Diversity

Our Approach

But how do we map the original source code opcode assignments
used by the compiler into the two heterogenous cores?

CyberShield - Defeating Malware Attacks Through HW Diversity

VHDL Files

Our Approach

But how do we map the original source code opcode assignments
used by the compiler into the two heterogenous cores?

FPGA
Core 1

Core 2

Core 3

Attack
Detect
Voter

Synthesis
&

Implementation

Malware Resistant
Computer

FPGA
Design Tools

Processor 1

Program
Memory 1

Attack
Detect
Voter

HDL Description of
3x Computers &

Attack Detect Voter

Opcode Def 1

Processor 2

Program
Memory 2

Opcode Def 2

Processor 3

Program
Memory 3

Opcode Def 3

CyberShield - Defeating Malware Attacks Through HW Diversity

VHDL Files

Our Approach

But how do we map the original source code opcode assignments
used by the compiler into the two heterogenous cores?

FPGA
Core 1

Core 2

Core 3

Attack
Detect
Voter

Synthesis
&

Implementation

Malware Resistant
Computer

FPGA
Design Tools

Processor 1

Program
Memory 1

Attack
Detect
Voter

HDL Description of
3x Computers &

Attack Detect Voter

Opcode Def 1

Processor 2

Program
Memory 2

Opcode Def 2

Processor 3

Program
Memory 3

Opcode Def 3

We define the VHDL
file hierarchy

describing the 3x
computers to have

separate instances for
Program Memory and
Opcode Definitions.

CyberShield - Defeating Malware Attacks Through HW Diversity

VHDL Files

Our Approach

But how do we map the original source code opcode assignments
used by the compiler into the two heterogenous cores?

FPGA
Core 1

Core 2

Core 3

Attack
Detect
Voter

Synthesis
&

Implementation

Malware Resistant
Computer

FPGA
Design Tools

Processor 1

Program
Memory 1

Attack
Detect
Voter

HDL Description of
3x Computers &

Attack Detect Voter

Opcode Def 1

Processor 2

Program
Memory 2

Opcode Def 2

Processor 3

Program
Memory 3

Opcode Def 3 Their format is
defined, but the

files don’t yet exist.

We define the VHDL
file hierarchy

describing the 3x
computers to have

separate instances for
Program Memory and
Opcode Definitions.

CyberShield - Defeating Malware Attacks Through HW Diversity

VHDL Files

Our Approach

But how do we map the original source code opcode assignments
used by the compiler into the two heterogenous cores?

FPGA
Core 1

Core 2

Core 3

Attack
Detect
Voter

Synthesis
&

Implementation

Malware Resistant
Computer

FPGA
Design Tools

Processor 1

Program
Memory 1

Attack
Detect
Voter

HDL Description of
3x Computers &

Attack Detect Voter

Source Code
(main.c)

Compiler
Processor
Definition

(header file)

Opcode Def 1

Processor 2

Program
Memory 2

Opcode Def 2

Processor 3

Program
Memory 3

Opcode Def 3

We want to start the
software development

using a standard tool flow.

(i.e., main.c, standard
development environments)

CyberShield - Defeating Malware Attacks Through HW Diversity

VHDL Files

Our Approach

But how do we map the original source code opcode assignments
used by the compiler into the two heterogenous cores?

FPGA
Core 1

Core 2

Core 3

Attack
Detect
Voter

Synthesis
&

Implementation

Malware Resistant
Computer

FPGA
Design Tools

Processor 1

Program
Memory 1

Attack
Detect
Voter

HDL Description of
3x Computers &

Attack Detect Voter

Source Code
(main.c)

Compiler
Processor
Definition

(header file)

Machine Code
(object file) Opcode Def 1

Disassembly Processor 2

Program
Memory 2

Opcode Def 2

Processor 3

Program
Memory 3

Opcode Def 3

The output of the
compiler is the

machine code using
the Baseline Computer
Opcode assignments.

Baseline
Computer

CyberShield - Defeating Malware Attacks Through HW Diversity

VHDL Files

Our Approach

But how do we map the original source code opcode assignments
used by the compiler into the two heterogenous cores?

FPGA
Core 1

Core 2

Core 3

Attack
Detect
Voter

Synthesis
&

Implementation

Malware Resistant
Computer

FPGA
Design Tools

Processor 1

Program
Memory 1

Attack
Detect
Voter

HDL Description of
3x Computers &

Attack Detect Voter

Source Code
(main.c)

Compiler
Processor
Definition

(header file)

Machine Code
(object file) Opcode Def 1

Disassembly Processor 2

Program
Memory 2

Opcode Def 2

Processor 3

Program
Memory 3

Opcode Def 3

The disassembly gives us
details of which fields in

the machine code are
Opcodes vs. Operands.

Baseline
Computer

CyberShield - Defeating Malware Attacks Through HW Diversity

Opcode
Translator

VHDL Files

Our Approach

But how do we map the original source code opcode assignments
used by the compiler into the two heterogenous cores?

FPGA
Core 1

Core 2

Core 3

Attack
Detect
Voter

Synthesis
&

Implementation

Malware Resistant
Computer

FPGA
Design Tools

Processor 1

Program
Memory 1

Attack
Detect
Voter

HDL Description of
3x Computers &

Attack Detect Voter

Source Code
(main.c)

Compiler
Processor
Definition

(header file)

Machine Code
(object file) Opcode Def 1

Disassembly Processor 2

Program
Memory 2

Opcode Def 2

Processor 3

Program
Memory 3

Opcode Def 3

An Opcode Translator
can parse the Baseline

machine code and put it
into a VHDL form.

Baseline
Computer

CyberShield - Defeating Malware Attacks Through HW Diversity

Opcode
Translator

VHDL Files

Our Approach

But how do we map the original source code opcode assignments
used by the compiler into the two heterogenous cores?

FPGA
Core 1

Core 2

Core 3

Attack
Detect
Voter

Synthesis
&

Implementation

Malware Resistant
Computer

FPGA
Design Tools

Processor 1

Program
Memory 1

Attack
Detect
Voter

HDL Description of
3x Computers &

Attack Detect Voter

Source Code
(main.c)

Compiler
Processor
Definition

(header file)

Machine Code
(object file) Opcode Def 1

Disassembly Processor 2

Program
Memory 2

Opcode Def 2

Processor 3

Program
Memory 3

Opcode Def 3

The translator creates two
VHDL files to describe the

Program Memory &
Opcode Definition.

The Opcode Definition is
provided as a VHDL Package.

Baseline
Computer

CyberShield - Defeating Malware Attacks Through HW Diversity

Opcode
Translator

VHDL Files

Our Approach

But how do we map the original source code opcode assignments
used by the compiler into the two heterogenous cores?

FPGA
Core 1

Core 2

Core 3

Attack
Detect
Voter

Synthesis
&

Implementation

Malware Resistant
Computer

FPGA
Design Tools

Processor 1

Program
Memory 1

Attack
Detect
Voter

HDL Description of
3x Computers &

Attack Detect Voter

Source Code
(main.c)

Compiler
Processor
Definition

(header file)

Machine Code
(object file) Opcode Def 1

Disassembly Processor 2

Program
Memory 2

Opcode Def 2

Processor 3

Program
Memory 3

Opcode Def 3
Since the translator has already parsed

the Opcode fields, it is simple to
reassign their binary instruction codes.

Opcode
Randomization

Scheme

CyberShield - Defeating Malware Attacks Through HW Diversity

Opcode
Translator

VHDL Files

Our Approach

But how do we map the original source code opcode assignments
used by the compiler into the two heterogenous cores?

FPGA
Core 1

Core 2

Core 3

Attack
Detect
Voter

Synthesis
&

Implementation

Malware Resistant
Computer

FPGA
Design Tools

Processor 1

Program
Memory 1

Attack
Detect
Voter

HDL Description of
3x Computers &

Attack Detect Voter

Source Code
(main.c)

Compiler
Processor
Definition

(header file)

Machine Code
(object file) Opcode Def 1

Disassembly Processor 2

Program
Memory 2

Opcode Def 2

Processor 3

Program
Memory 3

Opcode Def 3

Opcode
Randomization

Scheme

The translator produces
VHDL files for the

Program Memory &
Opcode Definition for the

other two computers.

The translator produces
VHDL files for the

Program Memory &
Opcode Definition for the

other two computers.

CyberShield - Defeating Malware Attacks Through HW Diversity

Opcode
Translator

VHDL Files

Our Approach

But how do we map the original source code opcode assignments
used by the compiler into the two heterogenous cores?

FPGA
Core 1

Core 2

Core 3

Attack
Detect
Voter

Synthesis
&

Implementation

Malware Resistant
Computer

FPGA
Design Tools

Processor 1

Program
Memory 1

Attack
Detect
Voter

HDL Description of
3x Computers &

Attack Detect Voter

Source Code
(main.c)

Compiler
Processor
Definition

(header file)

Machine Code
(object file) Opcode Def 1

Disassembly Processor 2

Program
Memory 2

Opcode Def 2

Processor 3

Program
Memory 3

Opcode Def 3

Opcode
Randomization

Scheme

The synthesis step creates 3x, functionally-
equivalent, heterogeneous computers running
the same software, just with different Opcode

assignments.

Since the different Opcodes alter the control
unit synthesis, it results in different hardware.

CyberShield

CyberShield - Defeating Malware Attacks Through HW Diversity

Opcode
Translator

VHDL Files

Testbed for Demonstration

FPGA
Core 1

Core 2

Core 3

Attack
Detect
Voter

Synthesis
&

Implementation

Malware Resistant
Computer

FPGA
Design Tools

Processor 1

Program
Memory 1

Attack
Detect
Voter

HDL Description of System

Source Code
(main.c)

Compiler
Processor
Definition

(header file)

Machine Code
(object file) Opcode Def 1

Disassembly Processor 2

Program
Memory 2

Opcode Def 2

Processor 3

Program
Memory 3

Opcode Def 3

Opcode
Randomization

Scheme

CyberShield - Defeating Malware Attacks Through HW Diversity

Opcode
Translator

VHDL Files

Testbed for Demonstration

FPGA
Core 1

Core 2

Core 3

Attack
Detect
Voter

Synthesis
&

Implementation

Malware Resistant
Computer

FPGA
Design Tools

Processor 1

Program
Memory 1

Attack
Detect
Voter

HDL Description of System

Source Code
(main.c)

Compiler
Processor
Definition

(header file)

Machine Code
(object file) OpCode Def 1

Disassembly Processor 2

Program
Memory 2

OpCode Def 2

Processor 3

Program
Memory 3

OpCode Def 3

Opcode
Randomization

Scheme

CyberShield - Defeating Malware Attacks Through HW Diversity

Opcode
Translator

VHDL Files

Testbed for Demonstration

FPGA
Core 1

Core 2

Core 3

Attack
Detect
Voter

Synthesis
&

Implementation

Malware Resistant
Computer

FPGA
Design Tools

Processor 1

Program
Memory 1

Attack
Detect
Voter

HDL Description of System

Source Code
(main.c)

Compiler
Processor
Definition

(header file)

Machine Code
(object file) OpCode Def 1

Disassembly Processor 2

Program
Memory 2

OpCode Def 2

Processor 3

Program
Memory 3

OpCode Def 3

Opcode
Randomization

Scheme

Standard Eclipse Programming Environment
Supporting C and Assembly.

Targeting a widely-used Microcontroller, the
MSP430. A 16-bit RISC processor. Testbed program (main.c) to

keep a missile upright

CyberShield - Defeating Malware Attacks Through HW Diversity

Opcode
Translator

VHDL Files

Testbed for Demonstration

FPGA
Core 1

Core 2

Core 3

Attack
Detect
Voter

Synthesis
&

Implementation

Malware Resistant
Computer

FPGA
Design Tools

Processor 1

Program
Memory 1

Attack
Detect
Voter

HDL Description of System

Source Code
(main.c)

Compiler
Processor
Definition

(header file)

Machine Code
(object file) OpCode Def 1

Disassembly Processor 2

Program
Memory 2

OpCode Def 2

Processor 3

Program
Memory 3

OpCode Def 3

Opcode
Randomization

Scheme

CyberShield - Defeating Malware Attacks Through HW Diversity

Opcode
Translator

VHDL Files

Testbed for Demonstration

FPGA
Core 1

Core 2

Core 3

Attack
Detect
Voter

Synthesis
&

Implementation

Malware Resistant
Computer

FPGA
Design Tools

Processor 1

Program
Memory 1

Attack
Detect
Voter

HDL Description of System

Source Code
(main.c)

Compiler
Processor
Definition

(header file)

Machine Code
(object file) OpCode Def 1

Disassembly Processor 2

Program
Memory 2

OpCode Def 2

Processor 3

Program
Memory 3

OpCode Def 3

Opcode
Randomization

Scheme

Custom Python / JAVA Script code.

CyberShield - Defeating Malware Attacks Through HW Diversity

Opcode
Translator

VHDL Files

Testbed for Demonstration

FPGA
Core 1

Core 2

Core 3

Attack
Detect
Voter

Synthesis
&

Implementation

Malware Resistant
Computer

FPGA
Design Tools

Processor 1

Program
Memory 1

Attack
Detect
Voter

HDL Description of System

Source Code
(main.c)

Compiler
Processor
Definition

(header file)

Machine Code
(object file) Opcode Def 1

Disassembly Processor 2

Program
Memory 2

Opcode Def 2

Processor 3

Program
Memory 3

Opcode Def 3

Opcode
Randomization

Scheme

CyberShield - Defeating Malware Attacks Through HW Diversity

Opcode
Translator

VHDL Files

Testbed for Demonstration

FPGA
Core 1

Core 2

Core 3

Attack
Detect
Voter

Synthesis
&

Implementation

Malware Resistant
Computer

FPGA
Design Tools

Processor 1

Program
Memory 1

Attack
Detect
Voter

HDL Description of System

Source Code
(main.c)

Compiler
Processor
Definition

(header file)

Machine Code
(object file) Opcode Def 1

Disassembly Processor 2

Program
Memory 2

Opcode Def 2

Processor 3

Program
Memory 3

Opcode Def 3

Opcode
Randomization

Scheme

We built a fully functional MSP430 in
VHDL from the TI datasheets. We used Matlab Simulink

HDL Coder to generate
the VHDL from a

graphical/functional
description.

CyberShield - Defeating Malware Attacks Through HW Diversity

Opcode
Translator

VHDL Files

Testbed for Demonstration

FPGA
Core 1

Core 2

Core 3

Attack
Detect
Voter

Synthesis
&

Implementation

Malware Resistant
Computer

FPGA
Design Tools

Processor 1

Program
Memory 1

Attack
Detect
Voter

HDL Description of System

Source Code
(main.c)

Compiler
Processor
Definition

(header file)

Machine Code
(object file) Opcode Def 1

Disassembly Processor 2

Program
Memory 2

Opcode Def 2

Processor 3

Program
Memory 3

Opcode Def 3

Opcode
Randomization

Scheme

The entire control unit is described
as a graph and then converted into

VHDL by the HDL coder toolbox.

CyberShield - Defeating Malware Attacks Through HW Diversity

Opcode
Translator

VHDL Files

Testbed for Demonstration

FPGA
Core 1

Core 2

Core 3

Attack
Detect
Voter

Synthesis
&

Implementation

Malware Resistant
Computer

FPGA
Design Tools

Processor 1

Program
Memory 1

Attack
Detect
Voter

HDL Description of System

Source Code
(main.c)

Compiler
Processor
Definition

(header file)

Machine Code
(object file) OpCode Def 1

Disassembly Processor 2

Program
Memory 2

OpCode Def 2

Processor 3

Program
Memory 3

OpCode Def 3

Opcode
Randomization

Scheme

CyberShield - Defeating Malware Attacks Through HW Diversity

Opcode
Translator

VHDL Files

Testbed for Demonstration

FPGA
Core 1

Core 2

Core 3

Attack
Detect
Voter

Synthesis
&

Implementation

Malware Resistant
Computer

FPGA
Design Tools

Processor 1

Program
Memory 1

Attack
Detect
Voter

HDL Description of System

Source Code
(main.c)

Compiler
Processor
Definition

(header file)

Machine Code
(object file) OpCode Def 1

Disassembly Processor 2

Program
Memory 2

OpCode Def 2

Processor 3

Program
Memory 3

OpCode Def 3

Opcode
Randomization

Scheme

We used the intel Quartus
FPGA design tools.

CyberShield - Defeating Malware Attacks Through HW Diversity

Opcode
Translator

VHDL Files

Testbed for Demonstration

FPGA
Core 1

Core 2

Core 3

Attack
Detect
Voter

Synthesis
&

Implementation

Malware Resistant
Computer

FPGA
Design Tools

Processor 1

Program
Memory 1

Attack
Detect
Voter

HDL Description of System

Source Code
(main.c)

Compiler
Processor
Definition

(header file)

Machine Code
(object file) OpCode Def 1

Disassembly Processor 2

Program
Memory 2

OpCode Def 2

Processor 3

Program
Memory 3

OpCode Def 3

Opcode
Randomization

Scheme

CyberShield - Defeating Malware Attacks Through HW Diversity

Opcode
Translator

VHDL Files

Testbed for Demonstration

FPGA
Core 1

Core 2

Core 3

Attack
Detect
Voter

Synthesis
&

Implementation

Malware Resistant
Computer

FPGA
Design Tools

Processor 1

Program
Memory 1

Attack
Detect
Voter

HDL Description of System

Source Code
(main.c)

Compiler
Processor
Definition

(header file)

Machine Code
(object file) OpCode Def 1

Disassembly Processor 2

Program
Memory 2

OpCode Def 2

Processor 3

Program
Memory 3

OpCode Def 3

Opcode
Randomization

Scheme

We used the DE0-CV
FPGA board with an intel

Cyclone V FPGA.

CyberShield - Defeating Malware Attacks Through HW Diversity

Demonstration Under Attack

Stepper motor for control

Functionally Equivalent Systems
“MSP430 vs. CyberShield”

Both running closed-loop control code to
keep missile upright and accepted setpoint

angles over UART.

Functionally Equivalent Systems
“MSP430 vs. CyberShield”

Both running closed-loop control code to
keep missile upright and accepted setpoint

angles over UART.

Angle sensor

UART for angle setpoint
(47° or 61° or 79°,

CyberShield - Defeating Malware Attacks Through HW Diversity

Demonstration Under Attack

The computer periodically sends the stepper motor its
setpoint angle. The send frequency is dictated by a

timer that triggers and interrupt.

The computer continuously reads the actual angle of
the missile from the sensor and compares it to the

setpoints. It adjusts motor accordingly.

New setpoints are received asynchronously from a user
over UART. A Rx on the UART link triggers an IRQ.

Program Description

CyberShield - Defeating Malware Attacks Through HW Diversity

Demonstration Under Attack

Program Vulnerabilities
(Classic Buffer Overflow Attack)

Data MemoryAddress
x2000

x3000

decode_array

frequency
set_angle
rx_index
RXBUF
index

Global
Variables

Stack

ISR Return Addresses

Local Variables

CyberShield - Defeating Malware Attacks Through HW Diversity

Demonstration Under Attack

Program Vulnerabilities
(Classic Buffer Overflow Attack)

Data MemoryAddress
x2000

x3000

decode_array

frequency
set_angle
rx_index
RXBUF
index

Global
Variables

Stack

ISR Return Addresses

Local Variables1. When user sends new
setpoint over UART, an

IRQ triggers, stacks return
address, and retrieves new

value for RXBUF.

CyberShield - Defeating Malware Attacks Through HW Diversity

Demonstration Under Attack

Program Vulnerabilities
(Classic Buffer Overflow Attack)

Data MemoryAddress
x2000

x3000

decode_array

frequency
set_angle
rx_index
RXBUF
index

Global
Variables

Stack

ISR Return Addresses

Local Variables1. When user sends new
setpoint over UART, an

IRQ triggers, stacks return
address, and retrieves new

value for RXBUF.

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

CyberShield - Defeating Malware Attacks Through HW Diversity

Demonstration Under Attack

Program Vulnerabilities
(Classic Buffer Overflow Attack)

Data MemoryAddress
x2000

x3000

decode_array

frequency
set_angle
rx_index
RXBUF
index

Global
Variables

Stack

ISR Return Addresses

Local Variables1. When user sends new
setpoint over UART, an

IRQ triggers, stacks return
address, and retrieves new

value for RXBUF.

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

3. This allows the attacker
to stream in malicious
code and replace the

correct ISR return address.

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

CyberShield - Defeating Malware Attacks Through HW Diversity

Demonstration Under Attack

Program Vulnerabilities
(Classic Buffer Overflow Attack)

Data MemoryAddress
x2000

x3000

decode_array

frequency
set_angle
rx_index
RXBUF
index

Global
Variables

Stack

ISR Return Addresses

Local Variables1. When user sends new
setpoint over UART, an

IRQ triggers, stacks return
address, and retrieves new

value for RXBUF.

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

3. This allows the attacker
to stream in malicious
code and replace the

correct ISR return address.

NOP

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

CyberShield - Defeating Malware Attacks Through HW Diversity

Demonstration Under Attack

Program Vulnerabilities
(Classic Buffer Overflow Attack)

Data MemoryAddress
x2000

x3000

decode_array

frequency
set_angle
rx_index
RXBUF
index

Global
Variables

Stack

ISR Return Addresses

Local Variables1. When user sends new
setpoint over UART, an

IRQ triggers, stacks return
address, and retrieves new

value for RXBUF.

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

3. This allows the attacker
to stream in malicious
code and replace the

correct ISR return address.

NOP
NOP

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

CyberShield - Defeating Malware Attacks Through HW Diversity

Demonstration Under Attack

Program Vulnerabilities
(Classic Buffer Overflow Attack)

Data MemoryAddress
x2000

x3000

decode_array

frequency
set_angle
rx_index
RXBUF
index

Global
Variables

Stack

ISR Return Addresses

Local Variables1. When user sends new
setpoint over UART, an

IRQ triggers, stacks return
address, and retrieves new

value for RXBUF.

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

3. This allows the attacker
to stream in malicious
code and replace the

correct ISR return address.

NOP
NOP
NOP

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

CyberShield - Defeating Malware Attacks Through HW Diversity

Demonstration Under Attack

Program Vulnerabilities
(Classic Buffer Overflow Attack)

Data MemoryAddress
x2000

x3000

decode_array

frequency
set_angle
rx_index
RXBUF
index

Global
Variables

Stack

ISR Return Addresses

Local Variables1. When user sends new
setpoint over UART, an

IRQ triggers, stacks return
address, and retrieves new

value for RXBUF.

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

3. This allows the attacker
to stream in malicious
code and replace the

correct ISR return address.

NOP
NOP
NOP

Malware

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

CyberShield - Defeating Malware Attacks Through HW Diversity

Demonstration Under Attack

Program Vulnerabilities
(Classic Buffer Overflow Attack)

Data MemoryAddress
x2000

x3000

decode_array

frequency
set_angle
rx_index
RXBUF
index

Global
Variables

Stack

ISR Return Addresses

Local Variables1. When user sends new
setpoint over UART, an

IRQ triggers, stacks return
address, and retrieves new

value for RXBUF.

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

3. This allows the attacker
to stream in malicious
code and replace the

correct ISR return address.

NOP
NOP
NOP

Malware
Malware

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

CyberShield - Defeating Malware Attacks Through HW Diversity

Demonstration Under Attack

Program Vulnerabilities
(Classic Buffer Overflow Attack)

Data MemoryAddress
x2000

x3000

decode_array

frequency
set_angle
rx_index
RXBUF
index

Global
Variables

Stack

ISR Return Addresses

Local Variables1. When user sends new
setpoint over UART, an

IRQ triggers, stacks return
address, and retrieves new

value for RXBUF.

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

3. This allows the attacker
to stream in malicious
code and replace the

correct ISR return address.

NOP
NOP
NOP

Malware
Malware
Malware

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

CyberShield - Defeating Malware Attacks Through HW Diversity

Demonstration Under Attack

Program Vulnerabilities
(Classic Buffer Overflow Attack)

Data MemoryAddress
x2000

x3000

decode_array

frequency
set_angle
rx_index
RXBUF
index

Global
Variables

Stack

ISR Return Addresses

Local Variables1. When user sends new
setpoint over UART, an

IRQ triggers, stacks return
address, and retrieves new

value for RXBUF.

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

3. This allows the attacker
to stream in malicious
code and replace the

correct ISR return address.

NOP
NOP
NOP

Malware
Malware
Malware
Malware

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

CyberShield - Defeating Malware Attacks Through HW Diversity

Demonstration Under Attack

Program Vulnerabilities
(Classic Buffer Overflow Attack)

Data MemoryAddress
x2000

x3000

decode_array

frequency
set_angle
rx_index
RXBUF
index

Global
Variables

Stack

ISR Return Addresses

Local Variables1. When user sends new
setpoint over UART, an

IRQ triggers, stacks return
address, and retrieves new

value for RXBUF.

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

3. This allows the attacker
to stream in malicious
code and replace the

correct ISR return address.

NOP
NOP
NOP

Malware
Malware
Malware
Malware
NOP

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

CyberShield - Defeating Malware Attacks Through HW Diversity

Demonstration Under Attack

Program Vulnerabilities
(Classic Buffer Overflow Attack)

Data MemoryAddress
x2000

x3000

decode_array

frequency
set_angle
rx_index
RXBUF
index

Global
Variables

Stack

ISR Return Addresses

Local Variables1. When user sends new
setpoint over UART, an

IRQ triggers, stacks return
address, and retrieves new

value for RXBUF.

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

3. This allows the attacker
to stream in malicious
code and replace the

correct ISR return address.

NOP
NOP
NOP

Malware
Malware
Malware
Malware
NOP
NOP

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

CyberShield - Defeating Malware Attacks Through HW Diversity

Demonstration Under Attack

Program Vulnerabilities
(Classic Buffer Overflow Attack)

Data MemoryAddress
x2000

x3000

decode_array

frequency
set_angle
rx_index
RXBUF
index

Global
Variables

Stack

ISR Return Addresses

Local Variables1. When user sends new
setpoint over UART, an

IRQ triggers, stacks return
address, and retrieves new

value for RXBUF.

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

3. This allows the attacker
to stream in malicious
code and replace the

correct ISR return address.

NOP
NOP
NOP

Malware
Malware
Malware
Malware
NOP
NOP
NOP

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

CyberShield - Defeating Malware Attacks Through HW Diversity

Demonstration Under Attack

Program Vulnerabilities
(Classic Buffer Overflow Attack)

Data MemoryAddress
x2000

x3000

decode_array

frequency
set_angle
rx_index
RXBUF
index

Global
Variables

Stack

ISR Return Addresses

Local Variables1. When user sends new
setpoint over UART, an

IRQ triggers, stacks return
address, and retrieves new

value for RXBUF.

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

3. This allows the attacker
to stream in malicious
code and replace the

correct ISR return address.

NOP
NOP
NOP

Malware
Malware
Malware
Malware
NOP
NOP
NOP

New ISR Return Addr

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

CyberShield - Defeating Malware Attacks Through HW Diversity

Demonstration Under Attack

Program Vulnerabilities
(Classic Buffer Overflow Attack)

Data MemoryAddress
x2000

x3000

decode_array

frequency
set_angle
rx_index
RXBUF
index

Global
Variables

Stack

ISR Return Addresses

Local Variables1. When user sends new
setpoint over UART, an

IRQ triggers, stacks return
address, and retrieves new

value for RXBUF.

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

3. This allows the attacker
to stream in malicious
code and replace the

correct ISR return address.

NOP
NOP
NOP

Malware
Malware
Malware
Malware
NOP
NOP
NOP

New ISR Return Addr

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

CyberShield - Defeating Malware Attacks Through HW Diversity

Demonstration Under Attack

Program Vulnerabilities
(Classic Buffer Overflow Attack)

Data MemoryAddress
x2000

x3000

decode_array

frequency
set_angle
rx_index
RXBUF
index

Global
Variables

Stack

ISR Return Addresses

Local Variables1. When user sends new
setpoint over UART, an

IRQ triggers, stacks return
address, and retrieves new

value for RXBUF.

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

3. This allows the attacker
to stream in malicious
code and replace the

correct ISR return address.

NOP
NOP
NOP

Malware
Malware
Malware
Malware
NOP
NOP
NOP

New ISR Return Addr

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

CyberShield - Defeating Malware Attacks Through HW Diversity

Demonstration Under Attack

Program Vulnerabilities
(Classic Buffer Overflow Attack)

Data MemoryAddress
x2000

x3000

decode_array

frequency
set_angle
rx_index
RXBUF
index

Global
Variables

Stack

ISR Return Addresses

Local Variables1. When user sends new
setpoint over UART, an

IRQ triggers, stacks return
address, and retrieves new

value for RXBUF.

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

3. This allows the attacker
to stream in malicious
code and replace the

correct ISR return address.

NOP
NOP
NOP

Malware
Malware
Malware
Malware
NOP
NOP
NOP

New ISR Return Addr

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

CyberShield - Defeating Malware Attacks Through HW Diversity

Demonstration Under Attack

Program Vulnerabilities
(Classic Buffer Overflow Attack)

Data MemoryAddress
x2000

x3000

decode_array

frequency
set_angle
rx_index
RXBUF
index

Global
Variables

Stack

ISR Return Addresses

Local Variables1. When user sends new
setpoint over UART, an

IRQ triggers, stacks return
address, and retrieves new

value for RXBUF.

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

3. This allows the attacker
to stream in malicious
code and replace the

correct ISR return address.

NOP
NOP
NOP

Malware
Malware
Malware
Malware
NOP
NOP
NOP

New ISR Return Addr

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

CyberShield - Defeating Malware Attacks Through HW Diversity

Demonstration Under Attack

Program Vulnerabilities
(Classic Buffer Overflow Attack)

Data MemoryAddress
x2000

x3000

decode_array

frequency
set_angle
rx_index
RXBUF
index

Global
Variables

Stack

ISR Return Addresses

Local Variables1. When user sends new
setpoint over UART, an

IRQ triggers, stacks return
address, and retrieves new

value for RXBUF.

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

3. This allows the attacker
to stream in malicious
code and replace the

correct ISR return address.

NOP
NOP
NOP

Malware
Malware
Malware
Malware
NOP
NOP
NOP

New ISR Return Addr

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

CyberShield - Defeating Malware Attacks Through HW Diversity

Demonstration Under Attack

Program Vulnerabilities
(Classic Buffer Overflow Attack)

Data MemoryAddress
x2000

x3000

decode_array

frequency
set_angle
rx_index
RXBUF
index

Global
Variables

Stack

ISR Return Addresses

Local Variables1. When user sends new
setpoint over UART, an

IRQ triggers, stacks return
address, and retrieves new

value for RXBUF.

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

3. This allows the attacker
to stream in malicious
code and replace the

correct ISR return address.

NOP
NOP
NOP

Malware
Malware
Malware
Malware
NOP
NOP
NOP

New ISR Return Addr

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

CyberShield - Defeating Malware Attacks Through HW Diversity

Demonstration Under Attack

Program Vulnerabilities
(Classic Buffer Overflow Attack)

Data MemoryAddress
x2000

x3000

decode_array

frequency
set_angle
rx_index
RXBUF
index

Global
Variables

Stack

ISR Return Addresses

Local Variables1. When user sends new
setpoint over UART, an

IRQ triggers, stacks return
address, and retrieves new

value for RXBUF.

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

3. This allows the attacker
to stream in malicious
code and replace the

correct ISR return address.

NOP
NOP
NOP

Malware
Malware
Malware
Malware
NOP
NOP
NOP

New ISR Return Addr

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

CyberShield - Defeating Malware Attacks Through HW Diversity

Demonstration Under Attack

Program Vulnerabilities
(Classic Buffer Overflow Attack)

Data MemoryAddress
x2000

x3000

decode_array

frequency
set_angle
rx_index
RXBUF
index

Global
Variables

Stack

ISR Return Addresses

Local Variables1. When user sends new
setpoint over UART, an

IRQ triggers, stacks return
address, and retrieves new

value for RXBUF.

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

3. This allows the attacker
to stream in malicious
code and replace the

correct ISR return address.

NOP
NOP
NOP

Malware
Malware
Malware
Malware
NOP
NOP
NOP

New ISR Return Addr

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

CyberShield - Defeating Malware Attacks Through HW Diversity

Demonstration Under Attack

Program Vulnerabilities
(Classic Buffer Overflow Attack)

Data MemoryAddress
x2000

x3000

decode_array

frequency
set_angle
rx_index
RXBUF
index

Global
Variables

Stack

ISR Return Addresses

Local Variables1. When user sends new
setpoint over UART, an

IRQ triggers, stacks return
address, and retrieves new

value for RXBUF.

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

3. This allows the attacker
to stream in malicious
code and replace the

correct ISR return address.

NOP
NOP
NOP

Malware
Malware
Malware
Malware
NOP
NOP
NOP

New ISR Return Addr

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

CyberShield - Defeating Malware Attacks Through HW Diversity

Demonstration Under Attack

Program Vulnerabilities
(Classic Buffer Overflow Attack)

Data MemoryAddress
x2000

x3000

decode_array

frequency
set_angle
rx_index
RXBUF
index

Global
Variables

Stack

ISR Return Addresses

Local Variables1. When user sends new
setpoint over UART, an

IRQ triggers, stacks return
address, and retrieves new

value for RXBUF.

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

3. This allows the attacker
to stream in malicious
code and replace the

correct ISR return address.

NOP
NOP
NOP

Malware
Malware
Malware
Malware
NOP
NOP
NOP

New ISR Return Addr

Bad Set Angle

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

CyberShield - Defeating Malware Attacks Through HW Diversity

Demonstration Under Attack

Program Vulnerabilities
(Classic Buffer Overflow Attack)

Data MemoryAddress
x2000

x3000

decode_array

frequency
set_angle
rx_index
RXBUF
index

Global
Variables

Stack

ISR Return Addresses

Local Variables1. When user sends new
setpoint over UART, an

IRQ triggers, stacks return
address, and retrieves new

value for RXBUF.

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

3. This allows the attacker
to stream in malicious
code and replace the

correct ISR return address.

NOP
NOP
NOP

Malware
Malware
Malware
Malware
NOP
NOP
NOP

New ISR Return Addr

Bad Set Angle

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

CyberShield - Defeating Malware Attacks Through HW Diversity

Demonstration Under Attack

MSP430 Attack – How it looks in data memory…

The vulnerability

UART ISR Return Address

What the attacker is after

CyberShield - Defeating Malware Attacks Through HW Diversity

Demonstration Under Attack

MSP430 Attack – How it looks in data memory…

What the attacker is after

UART ISR Return Address

The vulnerability

The Inserted Malware

A NOP Sled is used so that
the exact ISR return address

isn’t needed.

CyberShield - Defeating Malware Attacks Through HW Diversity

Demonstration Under Attack

MSP430 Attack – How it looks in data memory…

What the attacker is after

UART ISR Return Address

The vulnerability

The Inserted Malware

A NOP Sled is used so that
the exact ISR return address

isn’t needed.

CyberShield - Defeating Malware Attacks Through HW Diversity

Demonstration Under Attack

The Same Attack is Made on CyberShield

Data MemoryAddress
x2000

x3000

decode_array

frequency
set_angle
rx_index
RXBUF
index

Global
Variables

Stack

ISR Return Addresses

Local Variables

NOP
NOP
NOP

Malware
Malware
Malware
Malware
NOP
NOP
NOP

New ISR Return Addr
The Malware Still Gets Inserted

via Buffer Overflow

CyberShield - Defeating Malware Attacks Through HW Diversity

Demonstration Under Attack

The Same Attack is Made on CyberShield

Data MemoryAddress
x2000

x3000

decode_array

frequency
set_angle
rx_index
RXBUF
index

Global
Variables

Stack

ISR Return Addresses

Local Variables

NOP
NOP
NOP

Malware
Malware
Malware
Malware
NOP
NOP
NOP

New ISR Return Addr
The Malware Still Gets Inserted

via Buffer Overflow

NOP

But as soon as the starts reading the inserted
code in the CPU, it detects that all opcodes are

the same!!!

CyberShield - Defeating Malware Attacks Through HW Diversity

Demonstration Under Attack

The Same Attack is Made on CyberShield
We can see how CyberShield Responds by
Measuring the Instruction Registers in the

CPU with a Logic Analyzer.

All Opcodes are Different
by Design

CyberShield - Defeating Malware Attacks Through HW Diversity

Demonstration Under Attack

The Same Attack is Made on CyberShield

CyberShield Halts Operation and
Initiates a Recovery Procedure.

We can see how CyberShield Responds by
Measuring the Instruction Registers in the

CPU with a Logic Analyzer.

The attack is detected when all three
CPUs see the same Opcode.

All Opcodes are Different
by Design

CyberShield - Defeating Malware Attacks Through HW Diversity

Demonstration Under Attack

The Same Attack is Made on CyberShield

CyberShield Halts Operation and
Initiates a Recovery Procedure.

We can see how CyberShield Responds by
Measuring the Instruction Registers in the

CPU with a Logic Analyzer.

After flushing out the malware, CyberShield
resumes normal operation.

The attack is detected when all three
CPUs see the same Opcode.

All Opcodes are Different
by Design

The rapid nature of hardware recovery allows low
latency and the ability to operate-through-attack.

CyberShield - Defeating Malware Attacks Through HW Diversity

Conclusion

• CyberShield is an approach to defeating malware by introducing
hardware diversity at the hardware level.

• This is enabled by real-time HDL generation at compile-time.

• A buffer insertion attack was used to test CyberShield.

• CyberShield was able to detect the malware, remove it, and continue
operation while an MCU was not.

CyberShield - Defeating Malware Attacks Through HW Diversity

Questions

	CyberShield �An Approach to Defeat Malware in Edge Computers using Hardware Diversity
	Background
	Background
	Background
	Background
	Background
	Background
	Background
	Background
	Our Approach
	Our Approach
	Our Approach
	Our Approach
	Our Approach
	Our Approach
	Our Approach
	Our Approach
	Our Approach
	Our Approach
	Our Approach
	Our Approach
	Our Approach
	Our Approach
	Our Approach
	Our Approach
	Our Approach
	Our Approach
	Our Approach
	Our Approach
	Our Approach
	Our Approach
	Our Approach
	Our Approach
	Our Approach
	Our Approach
	Our Approach
	Testbed for Demonstration
	Testbed for Demonstration
	Testbed for Demonstration
	Testbed for Demonstration
	Testbed for Demonstration
	Testbed for Demonstration
	Testbed for Demonstration
	Testbed for Demonstration
	Testbed for Demonstration
	Testbed for Demonstration
	Testbed for Demonstration
	Testbed for Demonstration
	 Demonstration Under Attack
	 Demonstration Under Attack
	 Demonstration Under Attack
	 Demonstration Under Attack
	 Demonstration Under Attack
	 Demonstration Under Attack
	 Demonstration Under Attack
	 Demonstration Under Attack
	 Demonstration Under Attack
	 Demonstration Under Attack
	 Demonstration Under Attack
	 Demonstration Under Attack
	 Demonstration Under Attack
	 Demonstration Under Attack
	 Demonstration Under Attack
	 Demonstration Under Attack
	 Demonstration Under Attack
	 Demonstration Under Attack
	 Demonstration Under Attack
	 Demonstration Under Attack
	 Demonstration Under Attack
	 Demonstration Under Attack
	 Demonstration Under Attack
	 Demonstration Under Attack
	 Demonstration Under Attack
	 Demonstration Under Attack
	 Demonstration Under Attack
	 Demonstration Under Attack
	Demonstration Under Attack
	Demonstration Under Attack
	Demonstration Under Attack
	Demonstration Under Attack
	Demonstration Under Attack
	Demonstration Under Attack
	Demonstration Under Attack
	Demonstration Under Attack
	Conclusion
	

