Detection is not enough: Low-Cost Attack Recovery for Robotic Vehicle Systems

Pritam Dash, Zitao Chen, Guanpeng Li, Mehdi Karimibiuki,

Karthik Pattabiraman

THE UNIVERSITY OF BRITISH COLUMBIA

Robotic Vehicles (RV): Motivation

Robotic Vehicles (RV) are becoming popular in many industrial sectors.

Perception in Robotic Vehicles (RV)

Sensor Attacks Against Robotic Vehicles (RV)

GPS Spoofing. Transmit malicious GPS Signals

Actual Position

Spoofed Position

Tippenhauer et. al. On the requirements for successful GPS spoofing attacks. CCS'11

Sensor Attacks Against Robotic Vehicles (RV)

Signal Injection. Optical, Magnetic or Acoustic noise

Son et. al. Rocking Drones with Intentional Sound Noise on Gyroscopic Sensors. Usenix Security'2015

Sensor Attacks in the Real World

Iran–U.S. RQ-170 incident

UK Warship falsely pleased near Russian Naval Base by a GPS Cyber-attack

Invariant Based Detection

Model based Detection

"Very Effective in Detecting Attacks"

Choi et. al., Detecting Attacks against Robotic Vehicles: a Control Invariant Approach, CCS'18 Quinonez et. al., SAVIOR: Securing Autonomous Vehicles with Robust Physical Invariants, Usenix Security'20

Choi et. al., Detecting Attacks against Robotic Vehicles: a Control Invariant Approach, CCS'18 Quinonez et. al., SAVIOR: Securing Autonomous Vehicles with Robust Physical Invariants, Usenix Security'20

Failsafe is not enough either...

Our Goal

Recover from attacks and complete the mission without crashing the RV

Two Techniques for Attack Recovery:

- 1. PID-Piper [DSN'21 Best paper award]
- 2. **DeLorean [Under submission]**

PID Control (Proportional Integral Derivative)

RV under Attack

PID compensation

Approach to design Recovery Techniques

Feedforward Controller (FFC) Design

FFC design using LSTM Model

Feedforward Control (FFC) design

 $u(t) \leftarrow f(x(t), w(t))$

 $w \rightarrow$ waypoints

 $x \rightarrow \{$ gyro, mag, baro, gps, accelerometer, coefficients,, $\}$ 44 parameters Feature Engineering \rightarrow Reduced Feature set: 24 parameters

LSTM design

Correlate past and present sensors \rightarrow Reject sensor perturbations

PID-Piper: Recovery Framework

Feedforward Control

Feedback Control

PID-Piper: Recovery Framework

Feedforward Control

Feedback Control

PID-Piper: Recovery Framework

Feedforward Control

Feedback Control

Experimental Setup

PID-Piper Implementation

- FFC built using LSTM model (Python)
- Trained (Python)
- Plugged into Autopilot

 Firmware (C++)

Training

- 30 RV mission profile data
- Circular, Polygonal, Straight line.

Experimental Setup

PID-Piper: False Positives

Analysis Type	SRR [RAID'20]	PID-Piper [This work]
Recovery Activated	20%	10%
Missions Failed	50%	0%
FPR	10%	0%

$$FPR = \frac{Number of missions failed}{Total number of missions}$$

PID-Piper: Recovery under Attacks

Analysis Type	SRR [RAID'20]	PID-Piper [This work]
Mission Success	13%	83%
Mission Failed (no Crash)	50%	17%
Crash/Stall	37%	0%

 $Mission \, Success = \frac{No. of \ missions \ with \ deviation < 10 \ meters}{Total \ number \ of \ missions}$

PID-Piper: Recovery under Attacks

Analysis Type	SRR [RAID'20]	PID-Piper [This work]
Mission Success	13%	83%
Mission Failed (no Crash)	50%	17%
Crash/Stall	37%	0%

Recovery was successful in 83% of the cases with 0 crashes.

PID-Piper under Stealthy Attacks

PID-Piper: Overheads

Analysis Type	PID-Piper [This work]
CPU Overhead	~7%
Energy Overhead	~0.9%
Mission delays	Negligible

PID-Piper: Summary

- PID-Piper: A framework to recover Robotic Vehicles from attacks
 Videos
- Feed-forward Control to address overcompensation.
- 3 real and 3 simulated RV systems.

• 83% mission success from attacks, 0% false positives, limit stealthy attacks

Code: <u>https://github.com/DependableSystemsLab/pid-piper</u>

Pritam Dash, Guanpeng Li, Zitao Chen, Mehdi Karimibiuki, Karthik Pattabiraman, PID-Piper: Recovering Robotic Vehicles from Physical Attacks, DSN, 2021. Best Paper Award.

DeLorean: Multiple Sensors under Attack

Cao et. al., Invisible to both Camera and Lidar, IEEE S&P 2021

Cao et. al., Invisible to both Camera and Lidar, IEEE S&P 2021

DeLorean: Goal

DeLorean: Identify the Sensor(s) under attack

DeLorean: Isolate Sensor(s) from Control Process

DeLorean: Substitute Input Sequence

DeLorean: Substitute Input Sequence

Record Historical States	Position, Velocity, Angular rates
	Throttle

DeLorean: Substitute Input Sequence

Replay Historical States

Replay Historical States

Experimental Setup

DeLorean: Mission Success Under Attacks (Percentage)

Nos. of attacked Sensors	SRR [RAID'20]	PID-Piper	DeLorean
1	64	100	100
2	20	20	100
3	0	0	100
4	0	0	88
5	0	0	82

DeLorean recovers the RVs in 94% of the cases overall (0 crashes). 82% mission success even under attacks targeting all the sensors.

DeLorean: Summary

DeLorean: A framework to recover RVs from multi-sensor attack.

- Replays historic states to recover from attacks: single & multi-sensor
- Evaluated in 4 real RVs, and 2 simulated RVs
- 94% mission success, 82% when all the sensors are under attack
 - No other technique is able to recover from multi-sensor attacks beyond 2
- Performance overhead: 7.5%, Energy overhead: 19%

Under submission

Conclusion

Robotic Vehicles (RV) security is an important problem

- Used in many mission-critical and safety-critical settings
- Sensors can be modified/spoofed by attackers
- Need to ensure mission success despite attacks on RV

Two Techniques for recovering RVs from sensor attacks

- PID-Piper [DSN'21] : Single-sensor, but persistent attacks
- DeLoRean[submitted]: Multiple-sensor, but localized attacks
- Future work: Recovering RV platoons/drone swarms from attacks