INFORMATION PROCESSING 68 - NORTH-HOLLAND PUBLISHING COMPANY - AMSTERDAM (1969)

DESIGN OF DYNAMICALLY CHECKED COMPUTERS

WILLIAM C. CARTER and PETER R, SCHNEIDER
IBM Watson Reseavch Center.
Yovktown Heights, New Yovk, USA

A model for discussing dynamically checked logic circuits is used to establish the characteristics
required for combinational, sequential and checking circuits to be self-testing during normal opera-
tion. It is proved that a totally checked computer can be designed using synthesis techniques based on
iteration between tentative function designs and checker designs. This iteration process is controlled
by a probabilistic means for evaluating the effectiveness of the dynamic checking. Methods for system
use of the checking circuit's outputs are discussed.

1. PROBLEM

The design of computers with near perfect dy-
namic failure* detection requires knowledge of
how to:

1) encode logic signals and generate the corres-
ponding functional transformations;

2) implement both combinational and sequential
circuits which produce non-code outputs when
they fail; and

3) design checking circuits which, during normal
computer processing signal both the occur-
rences of errors ™ in the regular function cir-
cuits and failures in the checker itself.

Allied with these are the problems of developing

design evaluation procedures and system opera-

tional procedures using the checkers to locate
failures and initiate retry or configuration.

2. MODEL

The general circuit model will be as shown in
fig. 1 with:

x=pF =k, Bk e fo,1)
cshylsk e fo, 11
IRk e o, 11}

7 = {zk = (Z;‘?. S ,25)\2? € {Oy 1}}

SE{Skz(S'Z{,...

v=Hk-oh ..

and

* Failuve will refer to a mutation of the correct ma-
chine and error will mean an incorrect logic signal
due to a failure.

8738

T7H{X,8)~Y (7,8~ S w:(X,8)— Z.

This division may be somewhat arbitrary but will
allow certain results concerning testability to be
proved. Any variations must then be judged in
light of their impact on the overall testability.
The model is assumed to be synchronous, i.e.
the o mapping occurs at precise well defined
times.

Variables before encoding will be distinguished
by placing a caret (~) above them. The one-to-one,
in-to injections which perform the enccding are,

ux:}?—*X,nZﬁ B, Y-V, r=7r,

y

pe:8 =S, m=m uZ:ZAHZ,qZ@

For notational convenience it will be said that for
all % ¢ X, ux(i’k) = xR ¢ X, i.e. the superscript
identifiers will be preserved. The range of puy,

K (X) < X, will be the code space associated with
X and the co-range of uy, [X N~ ux()?)] < X, will
be the detectable error space for X. Similar
statements will be applicable for S, Y and Z.

Y | Combinational X
feedback T
Combinational ~
Sequential o S > output w|{ Z

Fig. 1. Circuit model.

Real-time Systems DESIGN OF DYNAMICALLY CHECKED COMPUTERS 879
3. MAPPINGS
R
Using these u encodings, the mappings v, o X O~ (X)) u/\-(ﬁ) Y
|

and w for the encoded variables are defined on
the code spaces of S, X, Y and Z through a
straightforward extension of the ¥, o and & map-
pings defined on 3. X, Y and Z. The encoded
functional mappings are no! defined for any situ-
ation where x% or sf or yJ are elements of the er-
ror space of X, S and Y respectively; these are
considered to be classical don't care conditions.

Fig. 2 presents a pictorial description of what
has happened in defining these new mappings for
the particular function 7. Under error-free oper-
ation the mappings will always occur between ele-
ments in the unshaded, code space areas. The
two basic Don't Care Assignment (DCA) policies
are given below.

DCA-1

Always have domain error space elements
mapped to range error space elements. Then if
an erroneous piece of data (an xhg ux()?)) is in-
jected into the system, the mappings will be
transferred into the error space and will stay
there unless another failure occurs: This is a
severe restriction on the implementation but per-
mits checking to occur only at the Z output since
errors persist and propagate.

DCA-2

Allow domain error space elements to be
mapped to range code space elements. This pro-
vides greater freedom of implementation but re-
quires checking at all interfaces if undetected
errors are to be prevented.

Intermediate between two extremes are the
situations where some of the mappings use -
DCA-1 and others DCA-2., Then, checking must
always occur at the interface preceding a DCA-2
mapping if all errors are to be detected.

The previous remarks serve as a basis for
proof of the following theorem.

Theovem 1. Necessary conditions for dynamical-
ly detecting all single failures which can pro-
duce errors in the circuit gutputsnare that all
interface variables X, §, Y and Z must be en-
coded so that n >#%, m >, ¥ ># and g >§
and that checking must occur at all interfaces
preceding a DCA-2 mapping.

Even when all computer mappings use DCA-1,
it is still advisable to check at more interfaces
than just the final outputs. Otherwise, the system

Sﬁ~us(§)

Fig, 2. Mapping after encoding.

might have to operate for a long time after the
failure in order to propagate the failure to the
final outputs. Also, the state of the machine may
be so far removed from the correct state as to
make an algorithmic failure analysis impossible.

4. CHECKING

Once the variables have been encoded by the
mappings uy, Mg, dy and uz it is possible to de-
fine corresponding checking functions ay, ag, @y
and o, For simplicity, only the ay check on X
will be defined in detail; the others follow direct-
ly.

@, X—C E{ck =(cf,...,cb ‘Cf e {0,1}}.

By making @, a combinational logic function of
the interface variables x; the resulting dynamic
check is restricted to the type which is performed
immediately by sampling the existing interface
data, i.e. makes no use of the history of previous
performance.
The restrictions on oy are:
1) the check on the code space and the error
space must be distinguishable, i.e.

[ax(urEN] N [axXn~ pd)] = 03

2) o, must have some well defined and easily
used property; and

3) an implementation of o, must exist which is
self-tested using inputs from the code space
of X.

Theorvem 2. Necessary conditions for a dynamic
checker to meet the above restrictions are

that v > 2 and each ¢; =1,...,v take on the
values 0 and 1 for at least one x% in the code
space.

Proof. Restrictions 1 and 3 imply v = 2, other-
wise the final circuit output is untested for
failure to the one value it uses for all code
space inputs. Similarly, if any ¢; always

880 W. C. CARTER and P.

takes on one particular value, say 1, for all
xR ¢ u(X) then the ith output line of the checker
is not tested for being stuck at that value, say
stuck-at-1, using code space elements. Thus
each checker output must take on both 0 and 1
values for code space inputs. Q.E.D.

For simplicity, this paper will restrict its ex~
amples to v = 2. If {A} and {B}are subsets span-
ning {¥1,...,x,}, then checkers which meet the
above criteria are of the form c{(4), c9(B) with
c1, ¢9 having, for example, odd parity for code
space inputs and even parity for error space
inputs. Each circuit tree must be completely
checked by the respective {4} and {B} portions of
the code space inputs.

Assume that the X interface contains nine va-
riables xy,...,Xg and that code vectors have odd
parity. Then fig. 3 is a dynamic checking circuit
of the required type with A = {x{x3¥5xn¥g} and
B = {x9xgxgxg}. It is clear that each circuit tree
is exhaustively tested, i.e. sees all possible in-
put combinations during the occurrences of nor-
mal code space elements at the interface.

Next, assume the X interface contains the five
variables x,...,x5 in a 2-out-of-5 code. The
left half of table 1 shows the code space portion
for a particular «y. If the error space conditions
with less than 2 ones are mapped to 0, 0 and
those with more than 2 ones are mapped to 1,1,
the circuit in fig. 4 can be shown to meet all the
above requirements. The right portion of table 1
indicates this by denoting for each code space in-
put (row) the circuit lines and failures tested by
that input, e.g. 00011 tests @y and ¢y stuck-at-1
and by and cg stuck-at-0. Each circuit line (co-
lumn) is tested by at least one code input. All in-
puts are also tested.

The final example in fig. 5 is a checker which
operates on 2 two-rail encoded line pairs, i.e.
x¥1 = X2 and X3 = x4 in the code space. It gener-
ates an even parity output if either or both rails
have identical values on their pair of lines or if
the inputs are correct and a failure in the cir-
cuit exists. Such circuits can be interconnected
in a tree to check an interface of arbitrary size.

*2 X4

*6 X8

Fig. 3. Parity checker.

R. SCHNEIDER Hardware

Table 1
Function and lines tested
Function Lines tested
x1 %9 x3 x4 x5 ¢1 ¢2| a1 az a3 aq by by b3z bg c1 c2
00101 10f00O0O0O0O111101
01 0011 0{]00O0O0O0I111101
10001 10(000O0O0111101
0 0110100000111 101
010101000 00111101
10 01 01 0{0O0O0OO0OCI1 11101
00 0 11 0 1|1 0 1 0
0110 0 0 1 1 0 10
1010 0 01 1 0 10
11 00 0 0 1 1 01 0

XX X3 XX 4¥5 XX 45 N3N 4N5 V4XG XoXg X1X3X1X)

Fig. 4. A 2-out-of-5 checker.

3132 £37
]'31'4

b |

1 T
]] Al Lol
aq (12 [)1 b2

011 102

Fig. 5. Two-rail code checker,

After implementing several checkers of the
above type it becomes clear that restrictions 1
and 2 are easy to satisfy; restriction 3 is not.
Although design algorithms do not yet exist, many
guidelines and rules do [1, 2].

5. COMBINATIONAL MAPPINGS

The requirements are:

1) to have every single circuit failure manifest
itself as an interface error for at least one
code input, and

Real-time Systems

2) never have single failures produce interface
errors resulting in an erroneocus code output.

Theorvem 3. Given 1 and @, there exist encodings
and implementations of 7 and w which meet
the above requirements.

Proof. Use a parity encoding and implement each

. output as a separate, independent logic tree.
Alternately, use a classic two-rail implemen-~
tation. Q.E.D.

When implemented using DCA-2 these exam-
ples require slightly less than duplication. They
also require checking at the input interface, the
one source of commonality for the logic trees or
the two rails. Although more efficient encodings
and mappings may exist, unfortunately, algo-
rithms for obtaining them do not. A completely
checked # input, 2% output decoder, designed ac-
cording to these procedures, appears in ref. [2].

The great similarity between the design of
checkers and combinational circuits should be
clear: checking functions are just special DCA-1
combinational mappings.

6. SEQUENTIAL MAPPINGS

The requirements are the same as those for
combinational mappings. Liu [3] proved that it is
always possible to augment a state table so that
the augmented table can be realized as a set of %
k-stage Non-linear Feedback Shift Registers
(NFSR). Over the Galois field of characteristic
2 the eolumn vector

S =

=(~§11,.. ,g‘lk;...;gil,...,g"ik;...;ghi,..

specifies the present state of the NFSR. Let A

be the binary matrix whose elements are 1 only
for subscfripts (7, i+1), i not a multiple of %, and
let & be the Boolean function vector with nonzero
elements 7; =7 (X, S) only at those positions where
i is a multiple of 2. The next state of an NFSR is
then defined by the linear operator & through the
equation

o8 =A48Vvu.

Fig. 6 shows such an NFSR.

If T is a subset of the subscripts of the S vec-
tor, then the set of shift register elements s[T]
satisfy a parity encoding iff :

DESIGN OF DYNAMICALLY CHECKED COMPUTERS . 881

Combinational SSSSS
Feedback T

~b

S1p* 7 P12 511

.
.
.
I b
. :
. > #
vl
.
.
.
2T 2T T T LTIV

AN

«

éhk'f"' “|§h2 ~1Spa

Fig. 6. NFSR.

Vios[T] =V(s[T)

i.e., the parity of this set of shift register ele-
ments is unchanged during the transitions from
state to state. Using this definition and the &
operator, various encodings p¢ may be devised.
For example, let T; = {i,1;...;i, £} and define
os[T;] directly from 65{7;]. Then define the pari-
ty encoding ug on each shift register by adding a
new cell s;, ¢ to each register with

OSipel = Sipsl VI(Vos[T;]) V(Vs[T;]).
Using the equation defining ¢ (also o)
08 k1 = Siksl VS VTHX,S).
Fig. 7 shows a typical encoded register.

The previous construction indicates proof of
the following:

Theorem 4. Given 0, there exist encodings and
implementations of ¢ which meet the above re-
quirements,

A corollary to this theorem, based on a modi-
fied construction, is that as few as 1 extra cell
need be added for encoding. :

In these encodings, parity, either even or odd,
is preserved. A single error will change the pari-
ty and cause error space conditions to persist

’

AN ALAAYALAAYARYAR R LY
: 4
'y L 4

4

Siphe— - = 54 v){(V)+ sire1 H

Ti

Fig. 7. Encoded register.

882 W. C. CARTER and P. R. SCHNEIDER

until another error occurs. Thus a solid failure
may cause recurring errors which, in turn,
cause the parity (error space conditions) to os-
cillate.

Massey and Liu {4] showed how to perform
transformations between an NFSR with an exter-
nal input only at one end and an NFSR with a va-
riable number of inputs added (V) between stages
of the register. Although their work pertained to
special NFSR's, it can be generalized to the set
of NFSR's used here in order to obtain circuitry
tradeoffs. In particular, several simple encod-
ings exist which result in registers similar to
that in fig. 7 except the function 7 is modified
and the exclusive-OR with input 7; is not re-
quired.

7. EVALUATION

For ease of discussion consider the Z inter-
face. A problem of major concern in evaluating
any design is the determination of the probability
that a given failure in either w (denoted F(w)) or
a, (denoted F(;) will be detected. The follow-
ing probabilities, conditional on the existence of
the given F, define the pertinent information at
some given time.

Py = Pr. [error in w| Flw))

pg = Pr. [error at Z interface| F(w)]

pg = Pr. [Z in error space| F(w)]

p4 = Pr. [error in ale(aZ)]

p5 = Pr. [error at checker output | F(az)]
pg = Pr. [checker signals error| F(a,)]

p7 = Pr. [checker signals error|z in error]

Since it is necessary that an error exist some-

where in the circuit before it can reach an out-

put and since an error must exist at the outputs
before the output can enter the error space, the
following ordering exists:

Py P9 = b3, Py > P5>Pg-

To enable some simple computations, assume
the computing process to be stationary and inde-
pendent. Then for each p; a Pi(T), representing
the occurrence of the event in question in time T
given the failure F, is given as

TXR .
P(T)=1-(1-p) i=1,...,6
where R is the cycle rate.

The ideal design criterion for the function cir-
cuits is to have py = pg = P3 with P3(T) - 1 for

Hardware

T < MTBF. An acceptable alternative is py = py
providing the other conditions hold. In the latter
case undetected errors can exist in the circuitry
but the failure will always be detected as soon as
errors affect the interface data and it is still as-
sured that the ultimate detection occurs before a
second failure can develop. Any design for which
pg > p3 must be viewed very carefully since un-
detected interface errors could exist. Similar
criteria can be specified for the checking cir-
cuits using p4, p5 and pg. An ideal checking cir-
cuit design should also have pq = 1 although ex-
ceptions may be allowed. For example, if it is
impossible for the Z interface to reach a given
z® in the single failure environment and

P3(T) — 1 for T << MTBF, then it might be per-
missible to design o so that ay(zF) is in the
code space of the checker output, i.e. no error
is signalled.

When the circuits are analyzed it may be that
P;(T) does not approach 1 fast enough because
certain key interface elements occur with a very
low probability during normal operation. Then
it will be necessary to revise the circuit designs
or introduce periodic diagnosis or interface ex-
ercising to force PiT)— 1.

As an example consider the 2-out-of-5
checker in fig. 4 which has p4 > p5 = pg and
pq = 1. For the case of equally likely inputs it
can be shown that pg > {;. This means Pg(T) ap-
proaches 1 rapidly for a T corresponding to
about 100 machine cycles. Now assume that code
input 00011 occurs with probability 10-12, Since
this input is a unique test for the failure a1
stuck-at-1 (cf. table 1), it can be shown that
Pg(T) <1 for T corresponding to over 1012 ma-
chine cycles. Four inputs have this property of
being unique tests for certain failures and if any
one occurs with a low probability, trouble ensues.
However, symmetry can be used to redesign the
circuit so that a different four inputs (with higher
probability of occurrence) have the property of
being the unique tests.

8. SYNTHESIS

The synthesis approach used to date has been
to examine many classes of encodings of the type
described in section 2 and, for each, discover
whether a dynamic checking circuit of the type
discussed in section 4 exists. This builds a libra-
ry of useable encodings and corresponding check-
ing circuits. Then, when it comes to designing
the combinational and sequential function cir-
cuits, the synthesis process starts with the libra-

Real-time Systems

ry of permissible encodings and, in an iterative
process, attempts to design a testable circuit as
outlined in sections 5 and 6. If it is not possible
to generate an implementation, it becomes nec-
essary to expand the library or restructure the
system architecture.

9. SYSTEM OPERATION

Consider a seli-repairing computer system
where, for each functional unit, at least one iden-
tical, standby spare is provided [2]. Fig. 8 shows
a typical system interface involving two Sender
and two Receiver units, each designed according
to procedures given in this paper, with the in-
put section of Receiver 2 detailed for purposes
of illustration. To keep the interface simple it is
assumed that only one data line per Sender unit
exists; extension to more lines is straightfor-
ward. The dual output checking circuits in each
Sender drive a Status Register and Encoder that
records which Sender has not failed and gener-
ates an error-correction encoded signal to spe-
cify this unit, The Decoder in each receiver ac-
cepts this encoded signal and generates a 0 if
Sender 1 is to be used and a 1 if Sender 2 is to
be used. The logic tree then selectively gates
the information into the functional portion of the
Receiver. Such an interface can be made highly
failure-tolerant; failures in the Senders are re-
moved by having the checkers change the "status";
failures in the Status Register and Encoder are
masked through the redundant nature of the trans-
formation; and failures in the Decoder/logic tree
are indistinguishable from those in the actual
function, hence are handled at the next interface.

In other designs, the dual outputs of the many
checkers throughout the system could be reduced
(using the circuit in fig. 5) to one pair which
triggers an instruction retry or machine check.

DESIGN OF DYNAMICALLY CHECKED COMPUTERS 883

Sender >
Receiver 1
1
Ck. |—
E?
\
N
1 LR F
[\ u
N n
Sender - c
2 t
Ck. J X
S 0
Encoded < Decoder n
status -
register Receiver 2

Fig. 8. System interface.

[t might also be desirable to automatically log
the state of all the checkers after a failure for
subsequent use by the programmer or mainte-
nance personnel. Once the concept of total self-
testing is available, the variations for system
use proliferate,.

REFERENCES

[1} J. P.Roth, W.G. Bouricius and P. R. Schneider,
Programmed Algorithms to Compute Tests to De-
tect and Distinguish Between Failures in Logic
Circuits, IEEE TEC, Vol. 16 (1967) 567.

{21 J. P.Roth, W, G, Bouricius, W, C. Carter and P.R.
Schneider, Phase II of an Architectural Study for a
Self-Repairing Computer, SAMSO TR-67-106 (1967).

[3] C. L. Liu, Sequential-Machine Realization Using
Feedback Shift Registers, Proc. 5th Annual Symp.
on Switching Circuit Theory and Logical Design,
October 1964, p. 209.

[4] J. L. Massey and R. W, Liu, Equivalence of Non-
linear Shift-Registers, IEEE Trans. IT, Vol. 10
(1964).

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6

